世界トップ棋士を相手に連戦連勝した謎の棋士の正体はGoogleのAlphaGo(2017)
https://gigazine.net/news/20170105-mystery-go-master-alphago/
同時也有1部Youtube影片,追蹤數超過8萬的網紅范琪斐,也在其Youtube影片中提到,唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。 不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢? 因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能...
alphago master 在 GIGAZINE Facebook 的最佳貼文
囲碁AI「AlphaGo」に敗北した世界チャンピオンが「AIを負かすことはできない」と棋士を引退(2019)
https://gigazine.net/news/20191128-alpha-go-master-retire/
alphago master 在 科技大觀園 Facebook 的最佳貼文
【撼動圍棋界的 AI 棋手 AlphaGo】
#科普影片 #講故事
最近大家對天才西洋棋手的影集相當感興趣,
趕緊趁亂介紹圍棋界的 AI 棋手 AlphaGo,
在挑戰世界棋王之前,先秘密挑戰歐洲冠軍的故事。
大家可能都知道人工智慧 AlphaGo 打敗了圍棋世界冠軍,但很少人知道它大部分是由臺灣工程師黃士傑做出來的。他從師大就開始做這個主題,加入 Deepmind 公司時,面試主管還一直跟他說:「我們不做圍棋」 #搖手指
沒想到後來公司政策轉變,接連做出 AlphaGo、升級版 AlphaGo Master,和自學3天就出師的 AlphaGo Zero......
今天的影片,講這個故事給你聽,影片連結在底下↓↓
alphago master 在 范琪斐 Youtube 的最佳貼文
唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數ㄅ10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!
![post-title](https://i.ytimg.com/vi/DeKoSA_GLQU/hqdefault.jpg)