唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!
同時也有1部Youtube影片,追蹤數超過8萬的網紅范琪斐,也在其Youtube影片中提到,唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。 不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢? 因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能...
alphago alphago zero差異 在 范琪斐的美國時間 Facebook 的最佳貼文
唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!
alphago alphago zero差異 在 范琪斐 Youtube 的最佳貼文
唯一戰勝 Google 旗下 Deep Mind 公司開發的人工智慧 AlphaGo 的南韓棋王李世乭,宣布將要退休,因為他認為人類永遠沒辦法擊敗人工智慧。
不過演算法不是只會越來越強大,為什麼 AlphaGo 會錯判輸給李世乭呢?
因為AlphaGo 有個叫『隨機森林』的算法,可以預測對手可能會下哪一步,但李世乭這一步下在 AlphaGo 認為對方不可能會去下的那一步,李世乭當時下完這步棋,Alphago 還認為自己的贏面超過八成,繼續往後下了十手之後,Alphago 自己有一個勝率的表,突然開始下降,發現自己處於弱勢了,開始慌張了,於是 Alphago 就開始亂下險棋,出現了連業餘選手都不會犯的錯,想賭李世乭會出錯,最後就輸了。
但 AlphaGo 也從敗給李世乭找到自身弱點,再次強化學習能力。像 AlphaGo 的孿生兄弟 AlphaGo Zero,就是完全不靠任何人類經驗訓練的神經網路,它就是不斷跟自己對戰學習,結果在自學 3 天後,就以 100:0 打敗了舊版 AlphaGo ,自學 40 天後,就擊敗了曾經戰勝中國棋手柯潔的 AlphaGo Master,成為世界上最強的圍棋程式!
雖然未來人類可能再也贏不過AI,不過AI 的加入反而讓圍棋有了更多玩法,這時候 AI 的功能,是在擴展人類棋手的思路,和人類合作一起探索圍棋還未被發掘的領域。
因為圍棋是世界上最複雜的遊戲!是看哪個顏色的棋子,圈出的空間最多,誰就獲勝。聽起來規則很簡單,但實際上卻複雜到不行。
圍棋的棋盤是 19X19,通常一步會有 200 種下法,圍棋變化位置的排列組合一共有10 的 170 次方種可能性,比整個宇宙的原子數ㄅ10 的 80 次方還要多更多!人類通常都只能憑經驗跟感覺判斷,但判斷才是最困難的。剛有說嘛,圍棋的勝負是由最終局時,雙方控制地盤的多寡決定,但棋局進行到一半,雙方的地盤都還沒封閉,怎麽判斷形勢呢?很多職業棋手之間微妙的差異,就是體現在這個判斷能力上。
但就連開發 AlphaGo 的團隊都坦言,AlphaGo 面前的最大問題,和人類棋手是一樣的,就是圍棋太難了,還有規則中的規則,例如優勢、虧損、打劫,雖然 AlphaGo 的勝利或失敗,完全取決於這些機率的估計是否準確,但計算力還遠遠達不到『最優解』的程度。目前AlphaGo 團隊的做法是,讓AlphaGo學習像人類棋手一樣,去選點和判斷。
當機器把一件事情做得比人類好時,我們還能做什麼?
你對棋王退休有什麼看法?快和我們一起分享!
---------
《#范琪斐ㄉ寰宇漫遊》每週四晚間十點在寰宇新聞播出,沒跟上的也沒關係,歡迎訂閱我們的 YouTube 頻道 🔔#范琪斐ㄉ寰宇漫遊 🔔https://reurl.cc/ZvKM3 十點半準時上傳完整版!