🔥 NT330 特價中
課程已於 2021 年 8 月更新
學習資料科學、資料分析、機器學習(人工智慧)和 Python 與 Tensorflow、Pandas 和更多 !
本課程的主題包括 :
資料探索與視覺化
神經網路和深度學習
模型評估與分析
Python 3
Tensorflow 2.0
Numpy
Scikit-Learn
資料科學與機器學習專案和工作流程
在 Python 用 MatPlotLib 和 Seaborn 做資料視覺化
轉移學習( Transfer Learning )
影像辨識和分類
訓練/測試並交叉驗證
監督學習 : 分類、迴歸和時間序列
決策樹和隨機森林
整體學習( Ensemble Learning )
調整超參數( Hyperparameter Tuning )
採用 Pandas 資料框解決複雜任務
採用 Pandas 處理 CSV 檔
採用 TensorFlow 2.0 和 Keras深度學習 / 神經網路
使用 Kaggle 並進入機器學習競賽
如何呈現你的發現並讓你的老闆印象深刻
如何為你的分析清理並準備你的資料
K 最近鄰( K Nearest Neighbours )
支援向量機( Vector Machines )
迴歸分析( Linear Regression/Polynomial Regression )
如何運用 Hadoop、Apache Spark、Kafka 和 Apache Flink
如何用 Conda、MiniConda 和Jupyter Notebooks 設定你的環境
配合 Google Colab 採用 GPUs
https://softnshare.com/complete-machine-learning-and-data-science-zero-to-mastery/
隨機森林深度學習 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
人工智慧在自動駕駛車的作用
作者 : Anton Hristozov,軟體工程師/研究員
2020-10-12
自動駕駛車輛(autonomous vehicles)在農業、交通運輸和軍事等領域開始成為一種現實,很快地我們也將會看到它應用於一般消費者的日常生活中。
自動駕駛車輛根據感測器資訊和人工智慧(Artificial Intelligence;AI)演算法來執行一些必要的操作,因而需要收集資料、規劃並執行行駛路線。而這些任務,尤其是規劃和執行行駛路線需要非傳統的編程方法,這就有賴於AI中的機器學習(Machine Learning;ML)技術。
自動駕駛車輛仍有許多任務面臨巨大的挑戰,必須採用更先進縝密的方法來解決。取代人類的認知和運動能力並不是一件容易的事情,還需要持續多年的努力。AI還必須解決各種不同的任務,才能夠實現安全和可靠的自動駕駛。
宅經濟下,你需要知道電競週邊整合方案
本文將介紹讓自動駕駛車得以實現的AI應用,並提出其所面對的挑戰以及至今取得的成就,另外也探討了相較於傳統軟體的AI本質差異。在後續的文章中將進一步討論在自動駕駛領域進行開發、測試和部署AI技術的特定挑戰。
自動駕駛車的AI分析
自動駕駛車是汽車產業中成長最快速的領域,而AI則是自動駕駛車中最重要和最複雜的組成部份。圖1所示為典型的自動駕駛車組成。
自動駕駛車對於傳送即時數據的感測器數量,以及對數據進行智慧處理的需求可能會非常龐大。而AI主要被用於現代汽車的中央單元以及多個電子控制單元(ECU)中。
由於AI已在機器人等眾多領域中得到應用,它自然成為自動駕駛的首選技術。結合AI和感知等技術承諾可提供更安全、更具確定性的行為,從而帶來燃油效率、舒適性和便利性等優勢。
開發像自動駕駛車這樣複雜的AI系統面臨諸多挑戰。AI必須與多種感測器互動,並即時使用數據。許多AI演算法都是運算密集的工作負載,因此很難搭配使用記憶體和速度受限的CPU。現代車輛是一種即時系統,必須在時域中產生確定性結果,這關係到駕駛車輛的安全性。諸如此類的複雜分佈式系統需要大量的內部通訊,但這些內部通訊通常易於造成延遲,從而干擾AI演算法做出決策。此外,汽車中執行的軟體還存在功耗問題。運算越密集的AI演算法消耗功率也越多,尤其是對僅依靠電池充電的電動車(EV)而言,這會是一大問題。
在自動駕駛車中,AI用於執行多項重要任務。其主要任務之一是路徑規劃,即車輛的導航系統。AI的另一項重要任務是與感測系統互動,並解讀來自感測器的數據。
很顯然地,提供一套完整的解決方案來取代人類操控駕車的是一項艱鉅的任務。因此,製造商們開始將問題劃分為更小的部份,並逐一地解決,以期透過小幅進展最終實現完全的自動駕駛。業界一直不乏新創公司或具顛覆性的公司試圖解決所有的自動駕駛問題,並曾誓言要在2020年實現完全自動駕駛車上路。如今看來,現實顯然更複雜得多了,AI本質上存在的一些問題帶來了很多障礙。
隨著AI的發展與完善,我們將越來越接近具有安全且自主行駛的交通運輸願景。在那之前,我們必須展開長時間的開發與測試,而最終是否採用則取決於消費者的信心以及市場驅動力。儘管比預期費時更長,但一切終會發生。
需求與要求已經出現了,技術也幾近完備。其實際應用可能或快或慢,這完全取決於法規要求。分階段實施是可行之道,從比較簡單和更具確定性的用例開始,例如先在已知環境中導入自動駕駛。如果僅在具有較少未知的特定條件下行駛自動駕駛車,則可以充份緩解所使用的演算法壓力。
自駕車中的AI應用
感測器數據處理
自動駕駛車輛在運行期間,無數的感測器為車輛的中央電腦提供了數據,包括道路資訊、道路上出現的其他車輛資訊,以及如同人類感知般地偵測到任何障礙物的資訊。有些感測器甚至可以提供比普通人更好的感知能力,但要做到這一點就需要智慧演算法,用於理解即時產生的數據串流。
智慧演算法的主要任務之一是檢測並辨識車輛前方和周圍的物體。人工神經網路(ANN)是用於該任務的典型演算法,也稱為深度學習,因為神經網路包含許多層級,而每個層級又包含許多節點。圖2顯示了這種深度神經網路,不過在實際的神經網路中,其節點數和層數可能更多。
為了分類物體,視訊輸入分析採用機器學習演算法以及最可行的神經網路。由於我們有多個不同類型的感測器,因而必須為每個感測器配備專用的硬體/軟體模組。這種方法允許平行處理數據,因此可以更快做出決策。每個感測器單元都可以利用不同的AI演算法,然後將其結果傳達給其它單元或中央處理電腦。
路徑規劃
路徑規劃對於最佳化車輛行駛軌跡並產生更好的交通模式非常重要。它有助於降低延遲並避免道路擁堵。對於AI演算法來說,規劃也是一項非常適合它的任務。因為這是一項動態任務,可以考慮到很多因素,並在執行路徑時解決最佳化問題。路徑規劃的定義如下:「路徑規劃讓自動駕駛車輛能夠找到從A點到B點之間最安全、最便捷、最經濟的路線,它利用以往的駕駛經驗協助AI系統在未來作出更準確的決策。」
路徑執行
路徑規劃好之後,車輛就可以透過檢測物體、行人、自行車和交通號誌來掌握道路狀況,透過導航到達目的地。目標檢測演算法是AI社群的主要關注點,因為它能夠實現仿人類行為。而當道路情況不同或天氣條件變化時,挑戰就來了。許多測試車輛發生事故都是由於模擬環境與現實環境的條件不同,而AI軟體若接收到未知數據,很可能會做出無法預測的反應。
監測車輛狀況
最具前景的維護類型是預測性維護。其定義如下:「預測性維護利用監測和預測模型來確定機器狀況,並預測可能發生的故障以及何時發生。」它嘗試預測未來的問題,而不是已然存在的問題。從這方面來看,預測性維護可以節省大量的時間和金錢。包括監督學習和無監督學習都可用於預測性維護。其演算法能夠根據機載和機外數據來做出預測性維護的決策。用於該任務的機器學習演算法屬於分類演算法,例如邏輯迴歸、支援向量機以及隨機森林演算法等。
收集車險資料
來自車輛的數據記錄可以包含有關駕駛員行為的資訊,而且這些數據可以用來分析交通事故,也可用於處理車險理賠。所有這些都有助於降低汽車保險的保費,因為具有更加確定的安全性與保證。對於全自動駕駛車輛來說,賠償責任將從乘客(不再是駕駛人)轉移到製造商。而對半自動駕駛車輛來說,駕駛人仍可能承擔一部份責任。
要證明這一類的情況將越來越依賴於車輛AI系統所擷取到的智慧數據。來自所有感測器的數據會產生巨量的資訊,隨時保存所有數據可能不切實際,但是保存相關數據的快照,似乎是獲得證據的折衷方法,這些證據可用於特定交通事件的事後分析。這種方法類似於黑盒子保存數據的方法,可以在發生碰撞事故後根據其中的數據進行分析。
附圖:自動駕駛在農業、交通運輸和軍事等領域開始成為一種現實,很快地我們也將會看到它應用於一般消費者的日常生活中...
圖1:自動駕駛/連網車輛。(來源:Lentin, 2017)
圖2:深度神經網路示意圖(來源:Beachler, 2019)。
資料來源:https://www.eettaiwan.com/20201012ta31-role-of-ai-in-autonomous-vehicles/?fbclid=IwAR3ynFHau_8Podk-XKuJWJnvDbxUOR_TeNH-HWNiv7qOHV8LDTQAKVI3HmY
隨機森林深度學習 在 軟體開發學習資訊分享 Facebook 的精選貼文
✅ 課程說明
成為一個完整的資料科學家和機器學習工程師! 加入一個由20多萬名工程師組成的線上社群,參加一個由行業專家教授的課程,這些專家實際上為矽谷和多倫多等地的大公司工作過。 這是一個剛剛在 2020年 1 月推出的全新機器學習和資料科學課程! Andrei 課程的畢業生現在在谷歌、特斯拉、亞馬遜、蘋果、 IBM、 JP 摩根、 Facebook 等頂級科技公司工作。
從頭開始學習資料科學和機器學習,得到聘用,並在 Udemy 的最現代、最新的資料科學課程(我們使用最新版本的 Python、Tensorflow 2.0 和其他程式庫)的道路上享受樂趣。 本課程的重點在於提高效率: 不要再花時間在令人困惑的、過時的、不完整的機器學習教程上了。 我們非常自信,這是你找遍任何地方才能找到的最全面、最現代的課程(我們知道,這是一個大膽的陳述)。
這個綜合性的、基於專案的課程將向你介紹資料科學家的所有現代技能,在這個過程中,我們將建立許多真實世界的專案,新增到你的履歷組合中。 你可以訪問 Github 上的所有程式碼、工作簿和模板( Jupyter Notebooks ) ,這樣你就可以馬上把它們放到你的作品集中了! 我們相信這門課程解決了進入資料科學和機器學習領域的最大挑戰: 在一個地方擁有所有必要的資源,並學習僱主想要的最新趨勢和工作技能。
課程將是非常實際的,因為我們將帶領你從頭到尾成為一名專業的機器學習和資料科學工程師。 課程提供兩個路徑。 如果你已經知道程式設計,那麼你可以直接進入並跳過我們從頭教你 Python 的部分。 如果你是全新的,我們將從一開始就教你 Python 以及如何在現實世界中使用它來完成我們的專案。 不要擔心,一旦我們通過了像機器學習 101 和 Python 這樣的基礎知識,我們就可以進入高階主題,像神經網路、深度學習和轉移學習,這樣你將能夠在真實世界中實踐,並為實戰做好準備(我們向你展示完全成熟的資料科學和機器學習專案,並給你程式設計資源和備忘錄) !
本課程的主題包括 :
✅ 資料探索與視覺化
✅ 神經網路和深度學習
✅ 模型評估與分析
✅ Python 3
✅ Tensorflow 2.0
✅ Numpy
✅ Scikit-Learn
✅ 資料科學與機器學習專案和工作流程
✅ 在 Python 用 MatPlotLib 和 Seaborn 做資料視覺化
✅ 轉移學習( Transfer Learning )
✅ 影像辨識和分類
✅ 訓練/測試並交叉驗證
✅ 監督學習 : 分類、迴歸和時間序列
✅ 決策樹和隨機森林
✅ 整體學習( Ensemble Learning )
✅ 調整超參數( Hyperparameter Tuning )
✅ 採用 Pandas 資料框解決複雜任務
✅ 採用 Pandas 處理 CSV 檔
✅ 採用 TensorFlow 2.0 和 Keras深度學習 / 神經網路
✅ 使用 Kaggle 並進入機器學習競賽
✅ 如何呈現你的發現並讓你的老闆印象深刻
✅ 如何為你的分析清理並準備你的資料
✅ K 最近鄰( K Nearest Neighbours )
✅ 支援向量機( Vector Machines )
✅ 迴歸分析( Linear Regression/Polynomial Regression )
✅ 如何運用 Hadoop、Apache Spark、Kafka 和 Apache Flink
✅ 如何用 Conda、MiniConda 和Jupyter Notebooks 設定你的環境
✅ 配合 Google Colab 採用 GPUs
到本課程結束時,你將成為一名完整的資料科學家,可以在大公司找到工作。 我們將利用我們在課程中學到的一切來建構專業的真實世界專案,比如心臟病檢測、推土機價格預測器、犬種影像分類器等等。 到最後,你將有許多你已經建立的專案向其他人炫耀。
事實是: 大多數課程都教你資料科學,而且就只這樣。 他們會告訴你如何開始。 但問題是,你不知道接下來要往哪去,也不知道如何建立自己的專案。 或者他們會在螢幕上顯示大量的程式碼和複雜的數學運算,但是他們並沒能好好地解釋清楚到你能夠自己去解決現實生活機器學習問題的程度。
無論你是程式設計新手,還是想提高你的資料科學技能,或者來自不同的行業,這門課程都是為你而設的。 這個課程不是讓你在沒有理解原則的情況下編寫程式碼,這樣當你完成這個課程的時候,除了看另一個教學,你不知道還能做什麼。 不! 這門課程將推動你且向你挑戰,從一個完全沒有資料科學經驗的初學者,到成為一個可以滿載離開、忘記 Daniel 和 Andrei、建立自己的資料科學和機器學習工作流程的人。
機器學習在商業行銷和金融、醫療保健、網路安全、零售、運輸和物流、農業、物聯網、遊戲和娛樂、病人診斷、詐欺檢測、製造業的異常檢測、政府、學術 / 研究、推薦系統等等方面都有應用。 在這門課程中學到的技能將為你的職業生涯提供許許多多的選擇。
你聽到許多像人工神經網路或人工智慧等敘述,完成本課程,你將對這些詞有深刻的了解。
現在就加入課程,加入我們社群,在這個行業獲得支持,學習資料科學和機器學習。 我們保證這比任何關於這個話題的訓練營或者線上課程都要好。 課堂內見!
https://softnshare.com/complete-machine-learning-and-data-science-zero-to-mastery/
隨機森林深度學習 在 周志华:深度随机森林 的推薦與評價
... 深度神经网络需要大规模训练集. ◦ 在表征学习方面,深度学习的优势是因为其capacity很大,赋予简单模型,也可以达到相似的效果. 目录. ◦ gcForest方法论. ◦ 级联森林 ... ... <看更多>
隨機森林深度學習 在 【機器學習實作】7.3 隨機森林 - YouTube 的推薦與評價
【機器學習實作】7.3 隨機森林. 512 views · 1 year ago ...more. 林長鋆(Chang ... T8小教室#2 AI新手一定要了解的兩個技術- 機器學習vs 深度學習. 緯育 ... ... <看更多>