從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
「製造流程圖符號」的推薦目錄:
- 關於製造流程圖符號 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
- 關於製造流程圖符號 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於製造流程圖符號 在 半瓶醋 Facebook 的最讚貼文
- 關於製造流程圖符號 在 製造流程圖符號在PTT/Dcard完整相關資訊 - 動漫二維世界 的評價
- 關於製造流程圖符號 在 製造流程圖符號在PTT/Dcard完整相關資訊 - 動漫二維世界 的評價
- 關於製造流程圖符號 在 生產流程圖在PTT/Dcard完整相關資訊 的評價
- 關於製造流程圖符號 在 生產流程圖在PTT/Dcard完整相關資訊 的評價
- 關於製造流程圖符號 在 Word 基礎教學17:流程圖製作& SmartArt - YouTube 的評價
製造流程圖符號 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
德勤發佈2020技術趨勢報告:五個新趨勢可引發顛覆性變革
北京新浪網 10-26 18:12
來源:產業智能官
「2020 年的趨勢將顛覆整個行業,並在未來十年重新定義業務,即使數字創新已成為各種規模企業的常規行為。」德勤管理諮詢新興技術研究總監兼政府及公共服務首席技術官 Scott Buchholz 在一份報告中如是說。
近日,《德勤 2020 技術趨勢報告》(中文版)正式發佈(以下簡稱《報告》),報告指出了五個可能在短期內引發顛覆性變革的關鍵新興趨勢:「數字孿生:連結現實與數字世界」;「架構覺醒」;「技術道德與信任」;「人感體驗平台」;「財務與 IT 的未來」。
值得注意的是,這是德勤第十一年發佈技術趨勢年度報告。今年的技術趨勢報告繼續在開篇回顧了 11 年來的技術趨勢發展,展示了技術趨勢隨時間推移的演進全過程以及最新宏觀科技力量作為業務轉型基礎帶來的共生效益和不久的未來的新興科技力量。與此同時,《報告》還指出,未來三大顛覆性技術(即環境體驗、指數智能和量子技術)正蓄勢待發,我們將在本世紀20年代末開始感受到它們的影響。
一、九大宏觀科技力量
隨著以技術為驅動的創新的空前擴張,一場高風險的「打地鼠」的競爭遊戲由此展開,企業利用技術保持先進的能力將決定其生死存亡。
過去十年內,數字化體驗、分析技術和雲技術為各項技術賦能,展現了他們自身的價值,已然成為眾多企業有效地推進戰略和新商業模式的核心基礎。接下來十年中,數字現實、認知技術和區塊鏈將成為企業變革的顛覆性驅動力。它們的應用範圍將越來越廣,各行各業的案例成倍增加。技術業務、 風險和核心系統現代化是驅動企業變革和創新的基礎技術,它們需要保持穩定、強勁、可持續發展。
基於此框架下討論新興技術,可以簡化技術進步對企業所造成的顛覆性影響。同時,圍繞九大宏觀科技力量衍生更多細分領域和更加細化的技術創新點和趨勢點。
十年前我們首次探索數字化體驗、分析技術和雲技術之時,只能看到其中的可能性,並不能確切地估測 它們的影響。現如今,這些技術已經為大家所熟知,並在對業務、運營模式和市場造成了顛覆性影響之 后,發展勢頭依舊迅猛。
(1)數字化體驗
數字化體驗依然是企業變革的重要驅動因素。實際上,在德勤 2018 年全球 CIO 調查報告 中,64% 的參與者表示接下來的三年裡,數字化技術將對他們的業務造成影響。在去年的超越營銷:體驗重塑中,我們已經審視了這一趨勢,企業正逐漸摒棄傳統意義上以獲客為核心的營銷模式,轉而致力於創造更多以人為本的互動——包括與其員工和商業夥伴的互動。
(2)分析技術
分析技術包括能夠提供深刻洞察的基本技術和工具。數據管理、數據治理以及數據運營體系這些重要因素不僅僅是人工智慧項目的核心基礎。同時,鑒於企業內對數據儲存、數據隱私和數據使用的嚴格要求,這些重要因素也是必須面對和考慮的重大策略點。
60%的首席信息官(CIO)表示,在未來的三年內, 數據和分析技術將對他們業務帶來影響。但這個問題正變得更具挑戰性。「靜止的數據」 和「使用的數據」這兩個久經考驗的概念被「動態數據」所連接,藉助工具和平台動態數據進而支持數據流、數據攝取、數據分類、儲存和訪問。值得欣喜的是,雲技術、核心系統重塑、認知技術和其它技術正在為異常複雜的挑戰帶來全新的解決方案。
(3)雲技術
雲技術已經全面深入企業。90% 的企業在使用基於雲技術的服務,並且這一比例有增無減。實際上,就信息技術領域的投資預算來看,接下來三年內對雲技術的投資會翻倍。正如我們 2017 年所預計的那樣,雲技術已經不僅僅只是作為基礎應用,它帶來了 「一切即服務」 的藍海,使任何 IT 能力都可以變成基於雲的服務供企業使用。在眾多企業當中,少數超大規模企業主宰了公有雲和雲技術服務市場,在雲技術的賦能下,為其它宏觀力量的進一步創新提供基礎和平台,例如分析技術、雲技術、區塊鏈、數字現實,以及未來的量子技術。
雲技術還驅動我們思考並重塑一些陳舊的企業管理和業務職能。
當今的顛覆性驅動力(即數字現實、認知技術和區塊鏈)都是由體驗、分析技術和雲技術發展而來。未 來十年,這些新的趨勢雖然不再新鮮,但它們將和過往的重大趨勢一樣,在人們持續深刻的理解和應用 中,推動重要的變革。
(4)數字現實
數字現實技術,包括 AR/VR 、混合現實、語音交互、語音識別、普適計算、360°全方位攝像和沉浸式技術等,幫助用戶突破鍵盤和屏幕的禁錮,與用戶感知無縫銜接,用戶可更加自然地參與互動。數字現實的目的是打破傳統的空間界限,讓人與底層技術進行自然、本能、甚至下意識的互動。
(5)認知技術
機器學習、神經網路、機器人流程自動化、機器人程序、自然語言處理、以及更廣泛的人工智慧領域等認知技術可能推動所有產業變革。這些技術將人機互動個性化、場景化,通過 定製化語言或圖像信息,驅動業務流程,實現無人值守。
企業對認知技術的需求大幅增長一一互聯網數據中心(IDC)預測 2022 年 企業此項支出將達 776 億美元,與此同時,信任和技術道德問題也迫在眉睫。
(6)區塊鏈
德勤 2019 年全球區塊鏈調查報告中,超過半數的參與者表示區塊鏈技術至關重要,較前一 年增長了 10% 。83% 的人能夠明確構思區塊鏈技術的實際應用,較前一年增長了 9% 。調查結果顯示,2019 年,企業已經不再討論「區塊鏈是否可行?」,轉而關注「我們該如何利用區塊鏈?」
金融服務和金融科技公司持續領航區塊鏈技術的發展,但其它領域也開始推行區塊鏈技術, 尤其是政府、生命科學與醫療健康、科技、媒體、通訊等領域。
再提技術業務、風險和核心系統重塑似乎有些枯燥無味,但不可否認,它們是業務的核心所在。企業在這些已經發展很成熟的領域,依然繼續進行著可觀的投資。綜合來看,正是因為它們不僅為數字化轉型、創新與增長提供了可靠的、可規模化的基礎,也是在分析技術、認知技術、區塊鏈等顛覆性技術成功投資的必要條件。
(7) 技術業務
隨著技術應用與業務戰略的融合,技術業務也在不斷發展。隨著企業更多地通過重塑 IT 來實現運營效率提升和與業務部門合作者一起進行價值創造,很多 IT 團隊通過實施促進跨業務協作的開發體系(如敏捷和 DevOps ),逐漸將傳統的項目制交付調整為產品化運營。
強大的技術功能讓企業更敏捷地響應技術驅動的市場和業務的變化。一隻強大的數字化技術運營團隊能夠幫助企業迅速回應技術對市場的影響以及相關業務挑戰。
(8)風險
在以創新為驅動力的時代,企業面臨的風險遠遠超越了傳統的網路風險、監管風險、運營風險及財務威。2019 年的 CEO 和風險管理調查報告指出,企業最大的風險廣泛涉及新顛覆性技術、創新、生態系統合作夥伴、企業品牌及名譽、文化等。對此,很多公司清楚地意識到他們還未對此類風險做好準備,或沒有想法在管理此類風險方面進行投資。
除合規和安全的必要要求,企業還面臨新興技術對產品、服務和商業目標的潛在影響,這些使得企業正在把更為廣泛的信任作為企業戰略。
(9)核心系統現代化
核心系統現代化體現了數字化轉型、用戶期望及數據密集型演算法給核心系統的前台、中台和後台帶來的持續性壓力。無論是在財務數字化、實時供應鏈,還是在客戶關係管理系統,核心系統都承載了關鍵業務流程。
在如今這個即時、持續和定製交互的時代,企業需要降低整體的技術負債。實現核心系統 現代化的成熟舉措,比如重塑現有的遺留系統,更新 ERP 系統及重寫其他系統,這些目前來講尤為重要。
二、未來三大顛覆性技術
隨著三大顛覆性技術(即數字現實、認知技術和區塊鏈)崛起,並準備在未來十年為業務做出重大貢獻 的同時,未來三大技術發展和創新的新星(環境體驗、指數型智能和量子技術)正蓄勢待發。我們將在 本世紀 20 年代末開始感受到它們的影響。
a:環境體驗
環境體驗展望了這樣一個構想:在未來,技術只是環境的一部分。計算設備的功率不斷增加,體積不斷縮小。這些越來越小的設備將我們的輸入從非自然的(指向、點擊和滑動) 演變為自然的(說話、手勢和思考),它們與我們的交互從被動的(回答問題)變成主動的(提出意料之外的建議)。
隨著設備變得無縫和無處不在,它們和我們越來越密不可分。想像未來的世界,一些微小的,已連接的,內容感知的設備被嵌入辦公室、家中或者其他地方,成為背景活動的一部分。例如,你如果在腦海中想「我要在一個小時之內出發去機場」,就能觸發一系列背景活動,包括安排航班值機,準備可供生物特徵識別的虛擬登機牌,將無人駕駛汽車目的地設置為正確的航站樓,將家中的智能系統狀態調為「離開」,以及暫停出差期間的快遞服務等等。
b:指數智能
指數智能建立在當今認知技術能力上。如今,機器智能能夠發現數據中蘊藏的規律,但是無法判斷這些規律是否有內在的意義。同時,它目前還缺乏識別和響應人類互動和情感的細微差別的能力。而且,機器智能的認知能力還非常有限,比如機器能夠打敗國際象棋大師,卻不能理解房間發生了火災需要逃跑。
未來有無限可能。隨著對語義和符號識別的理解,機器逐漸能從假想的相關中梳理出真實的因果關係。藉助來自人感訥驗平台的技術組合,我們的虛擬助手將越來越能夠識別並適應我們的情緒。隨著研究人員開發出更廣義的智能,指數智能將超越統計和計算的層面。我們敢說,最終,這將導致更有能力的人工智慧誕生。
c:量子技術
量子技術利用亞原子微粒的反直覺特性處理信息,進行新型計算,實現「不可非法侵入式」 交流,技術微型化等等。量子計算中,這些量子比特(或量子位)的特殊屬性有可能發生 指數型變化。通過操縱單個粒子,量子計算機將能夠解決某些高度複雜的問題,這些問題 對於目前的超級計算機來說,太大,太雜亂,包括從數據科學到材料科學。
隨著研究者們不斷突破技術限制,量子計算機將逐漸取代傳統的計算機。數據科學家將能 夠處理前所未有宏大的數據量,並從中獲取相關性信息。材料科學家利用量子比特模擬原 子,這是無法在傳統計算機上實現的。同時,在通訊、物流、安全、密碼學、能量等不同領域,我們都能預見無限可能。
為了幫助大家更好的理解各類前沿技術動態,基於宏觀科技力量及其可被預期的時間範圍,報告歸納整理了一張完整的統一化視圖。
三、五大關鍵新興趨勢
一)技術道德與信任
技術變革常態化的同時,贏得全方位的信任變得更具挑戰——但也充滿機遇。
隨著數字技術的出現,企業要用戶以新的更深層次的方式信任他們,過去是獲取用戶個人信息,現在則是通過數字痕迹追蹤用戶的線上行為。同時,技術引起的問題也經常成為新聞頭條,例如安全漏洞、不當或非法監視、個人信息濫用、虛假信息傳播、演算法歧視、缺乏透明度等等。這些事件導致利益相關方之間不信任(包括客戶、僱員、合作 夥伴、投資者和管理者),嚴重損害企業聲譽。的確,消費者對商家的信任正在逐漸下降,人們對公共機構的態度也越來越謹慎,員工則要求企業明確闡述其核心價值觀。
德勤 2020 年全球市場趨勢報告中提到,當今時代,品牌信任對企業來講尤為重要,關係到企業的方方面面。無論是客戶、監管機構,還是媒體,都期望品牌商在其開展業務的各個領域都是開放、誠信和始終如一,從產品生產、促銷活動、到員工文化和合作夥伴關係維護等。
被技術顛覆的企業,它的每一個方面都意味著可以贏得或失去任何一個客戶、員工、合作夥伴、投資者和/或監管機構信任的機會。如果領導者能夠充分貫徹企業價值觀和技術道德觀,努力履行「做好事」的承諾,企業就能夠與利益相關者建立長期牢固的信任關係。在這種情況下,信任就變成了一個全方位的 承諾,並且確保信任是企業的技術,流程,人員都在共同努力維護的基礎。
技術道德這一術語指的是不局限於或側重於任何 一項技術的綜合價值觀,這個價值觀是指導企業對技術使用的整體方法及通過部署這些技術驅動業務戰略和運營企業應考慮主動評估如何以符合公司宗旨和核心價值觀的方式使用技術。
在數字時代,信任是個複雜的議題,企業面臨著無數的生存威脅。雖然顛覆性技術通常會給企業帶來指數型增長,但僅憑技術卻無法建立長期信任。因此,領先企業們正在通過全方位的維持利益相關者所期望的高度信任。領先企業們正在嘗 試通過各種方式,來維持利益相關者所期望的高度信任。
人工智慧、機器學習、區塊鏈、數字現實和其它 新興技術正以前所未有的速度和深度融入我們的 曰常生活。企業該如何通過客戶、合作夥伴和員工使用這些技術來構建信任呢?
解讀企業價值觀。
如今,技術根植於業務,機器學習也驅動著業務決策和行為,因此,必須先了解企業的技術解決方案,才能進一步解讀和評價企業價值觀。數字化系統可以被設計用來減少偏差,讓企業能夠遵循自己的原則運 營。
保障措施可以防止用戶以不健康或不負責任的方式使用技術,從而幫助提高利益相關者的利益。例如,一家公司對可能成癮的遊戲強制限定遊戲時間和遊戲花費一個內容提供商提醒用戶關注信息來源的準確性;雲計算提供商在 戶超出其預算之前自動發出警報。
建立強大的數據基礎。
如果不能系統性地、統一地追蹤數據內容及來源,並確定可訪問數據的人員,就沒有辦法營造良好的信任環境。強大的數據基礎讓利益相關者擁有共同的願景, 為數據負責,採用安全的技術手段實現有效的數據管理。管理者需要讓利益相關者了解他們提供的數據將如何運用,此外,除非為了法律或監管的目的,在利益相關者要求時須刪除相關數據。
強化防護措施。
德勤 2019 年未來網路調查報告顯示,管理者為網路問題花費的時間越來越多,網路防禦體系意味著您要 保護您的客戶、員工和商業合作夥伴,讓他們遠離與他們——或者說你們——的價值觀不同的群體。從最開始就需要建立並實施網路安全風險策略略,並將其貫穿於商業運營和政策制定的全過程,這絕不僅僅是信息技術部門的問題。企業領導者應當與信息技術部門一起制定全面的數字安全風險策略,考慮安全、隱私、 誠信和保密等各方面,增強利益相關者的信任,提高企業競爭力和優勢。因此,需要評估企業的風險容忍度,明確弱點所在,並判斷企業最具價值的數據和系統,制定風險緩解策略和恢復計劃。
二)財務與 IT 的未來
IT 和財務領導者共同努力為創新融資尋找靈活的途徑。
德勤的研究發現,56% 的首席信息官(CIO)期望應用 Agile, DevOps 或類似的靈活 IT 交付模式,來提高 IT 的響應能力並激發更廣泛的創新的雄心。
但目前有些難以克服的障礙阻礙這些努力:資金的來源和分配。IT 的運營和開發流程正變得越來越靈活,更加側重產品,而財務部門仍舊按照過去數十年的方式來制定預算、融資和財報。結果顯而易見:IT 需求與財務流程之間的矛盾。若這個問題得不到解決,那麼它可能會破壞首席信息官(CIO)的創新計劃,乃至整個企業的戰略目標。
IT 對資金的需求與財務的漫長流程之間的矛盾並非形成於一夜之間。而是在過去十年中曰漸累積。雲技術和平台技術一步步地顛覆了傳統運營模式,迫使財務部門不得不重新評估財務管理方法。
《報告》指出這種變革體現在三方面:
從資本支出轉向運營支出
從在現場轉型到基於雲的系統,涉及大量的支出從資本支出轉移到運營支出。事實上,團隊一直都有一些資本支出和運營支出。新的準則是「誰開發誰管理」。從會計的角度而言,短期運營支出增長會影響季度財報。
衡量難以捉摸的投資回報率。
技術創新舉措通常是難以達到內部收益率預期的嘗試,可能產生正回報也可能不會。在財務及短期收益上, 創新投資通常不具備傳統 IT 項目的信心水平, 因此這類投資往往也很難通過標準管理流程獲得有力支持。在某些情況下,這會導致財務部門難以建立精確的流程,來跟蹤長期投資回報率。例如,對於無限期重複使用的平台這類的固定預算投資,跟蹤其投資回報率更是難上加難。
計算交付價值。
根據德勤《 2018 年全球首席信息官(CIO)調查報 告》,65% 的受訪者表示他們在評估 IT 投資時, 通常採用具體案例具體分析的方法,而不是遵循常規財報流程。顯然,在評估 IT 帶來的價值這件事上,首席信息官 (CIO )與首席財務官 (CFO)不在同一立場。
作為財務與未來的T趨勢的一部分,我們預計有更多首席信息官(CIO)、首席財務官(CFO)以及他們各自的團隊,將會積極探索解決這些及其他在融資、會計與財報上所面臨的挑戰的方法。
三)數字孿生技術
利用下一代數字攣生技術助力企業設計、優化和轉型。
當下,企業正以多種方式使用數字彎生技術。在汽車和飛機製造領域,數字彎生技術逐漸成為優化整個製造價值鏈和創新產品的重要工具;在能源領域,油田服務運營商通過獲取和分析大量井內數據,建立數字模型,實時指導鑽井作業在醫療保健領域,心血管研究人員正在為臨床診斷、教育、培訓,創造高模擬的人類心臟的數字彎生體;作為智慧城市管理的典型案例, 新加坡使用詳細的虛擬城市模型,用於城市規劃、維護和災害預警項目。
數字彎生可以模擬物理對象或流程的各個方面。它們可以展現新 產品的工程圖和尺寸,也可以展現從設計到消費者整個供應鏈中 所有子部件和相應環節——即」已建成「數字彎生,也可採用 「即維護」模式——生產車間設備的實物展現。模擬模型可以捕獲 設備如何操作,工程師如何維護,甚至該設備生產的產品如何與客戶關聯。數字彎生可以有多種形式,但它們無一例外都在捕獲和利用現實世界的數據。
數字孿生髮展勢頭迅猛,得益於快速發展的模擬和建模能力、更好的互操作性和物聯網感測器, 以及更多可用的工具和計算的基礎架構等。因此, 各領域內的大小型企業都可以更多地接觸到數字孿生技術。IDC 預測,到 2022 年,40% 的物聯網平台供應商將集成模擬平台、系統和功能來創建數字孿生,70% 的製造商將使用該技術進行流程模擬和場景評估。
與此同時,通過訪問大量數據,使得創建比以往更為詳細、更為動態化的模擬成為可能。對於數字孿生的長期用戶而言,這就好比從模糊的黑白快照過渡到彩色高清數碼照片一樣,從數字源中獲取的信息越多,最後呈現的照片就越生動逼真。
長期來看,若想要實現數字孿生技術的全部潛力, 可能需要集成整個生態圈內的系統和數據。創建 一個完整的客戶生命周期或供應鏈(囊括了一線供應商和其自身的供應商)的數字化模擬,可以提供富有洞察力的宏觀運營觀點,但仍然需要將外部實體整合到內部數字化生態系統內。直至今曰,大多數企業仍對點對點連接之外的外部集成感到不滿意。克服這種猶豫可能是一個長期挑戰, 但最終,所有的付出都將是值得的。未來,期望企業會利用區塊鏈打破信息孤島,繼而驗證信息並將其輸入數字孿生體中。這可以釋放先前無法訪問的大量數據,從而使模擬更加細節化、動態化、更具潛在價值。
四)人感體驗平台
通過Al、神經科學、人本設計重塑人機聯接。
人感體驗平台趨勢顛覆了傳統的設計方法,它首先確定我們想要實現的人性化和情感體驗,而後決定使用何種情感和 AI 技術組合能夠達成這一效果。企業將面臨的一大挑戰是,如何針對不同的客戶群體、員工群體和其它利益相關者,確定能引起他們共鳴和引發他們情緒的具體響應或行為,並進一步開發情感技術,使其能夠識別和複製某一段體驗中的特質。
在不久的未來,我們將會看到人們對人性化的技術需求曰益增長。在數字化革命進程中,我們目前進入到一個階段,就是每個人之間未必有 接,但每個人一定都與技術有聯結。我們正在消除流程和交互,直接與機器互動。因此,我們渴望我們正在迅速失去的東西:有意義的聯結。為此,我們期望技術能夠用更 加人性化,更人道化的方式跟我們互動。設計能夠滿足這一期望的技術需要對人的行為有更深刻的洞察,並不斷創新,以提高我們預測和響應人們需求的能力。不久的將來,人感體驗很有可能會帶來長久的、可持續的競爭優勢。
五)架構覺醒
演進架構師角色,從而轉變系統架構並支持業務 發展的速度。
越來越多的技術領導層和高管們逐漸意識到,如今,技術架構領域的科學在戰略上比以往任何時候都更加重要。事實上,為了在技術創新顛覆的市場中保持競爭力,已成立的企業需要不斷演 他們的架構一一這一過程可以從改變技術架構師在企業內扮演的角色開始。
這種轉變的目的非常明確:把經驗最豐富的架構師安排到最需要他們的地方——即加入到設計複雜技術的軟體開發團隊中。一旦這些架構師被重新部署和賦能,他們便可幫助簡化技術棧, 提升技術敏捷性,從而為新興企業獲得市場優勢。另外,他們還可以直接負責實現業務成果,解決架構難題。
此外,擁抱架構覺醒這一趨勢的企業將開始重新定義架構師角色,使其更具協作性、創新性,並能對利益相關者的需求做出回應。具有全局觀的架構師可能會發現,自己正在多部 門混合的項目團隊中,與專注於應用程序的架構師 以及來自 1T 和業務部門的同事共同作戰。未來,他們的使命將不僅是利用傳統的架構組件,還要利用顛覆性力量(如區塊鏈、AI、及機器學習)大胆創新。
資料來源:https://m.news.sina.com.tw/article/20201026/36690918.html
製造流程圖符號 在 半瓶醋 Facebook 的最讚貼文
【返校】
插畫創作者粉專:
https://www.facebook.com/H.Chia.Art/
電玩在過去的社會裡,總帶給別人一種非主流的印象,尤其對於並非從小接觸網路世代的人來說,更有種神秘的隔閡。追根究柢,其實是電玩的故事題材,大部分都太遠離台灣大眾的生活的經驗與記憶。
其實這也是過去以來,電玩改編類型題材的電影一直難以跨越的鴻溝。因為「過去的」電玩並非如小說或漫畫一樣能快速的普及大眾化,再加上有些昂貴硬體的條件,要加入電玩的世界本身就有些門檻。電玩並非像兩三百塊一場電影能馬上得到即時的娛樂,有時你還需要花更多的時間浸淫投入,而且電玩本身若存在了一定的難度,若克服不了挑戰的挫折,就很難進行完整個故事流程,但電影與小說並沒有存在這種互動性上的門檻。
在這些條件限制下,電影公司如果要將一部電玩改編成電影,勢必要更著重於電玩迷的市場,然而電玩迷的票房也無法支撐起大部分的票房,那電影公司勢必要在粉絲與一般大眾之間為難與斟酌,例如【魔獸世界】就改編自擁有驚人玩家數量的電玩作品,但票房依舊滑鐵盧(也因為劇情本身就不太理想)。大部分電玩作品的名氣都是在電玩族群裡流傳,要向非電玩迷族群的一般大眾行銷存在了一定的難度。除非像【精靈寶可夢】因為本身玩法很親民,再加上動畫推波助瀾的關係,它跨越了年齡與族群的限制,更成為親子重要的活動之一,所以累積了大量的粉絲群,成為電影【名偵探皮卡丘】賣座的基礎。
從2018到2019年「華納兄弟」改編了四部電玩作品,清一色找了許多有知名度的演員擔綱演出,例如巨石強森與奧斯卡最佳女配角的艾莉西亞薇坎德,以及因【死侍】聲名大噪的萊恩雷諾斯,將這些演員做為銜接一般大眾與電玩迷兩邊市場的橋梁,每部都還有不俗的票房。
華納兄弟的改編證明,電玩改編的電影需要跨越一定的資本,才有可能將既有的電玩題材行銷到更多的消費群。
【跨越隔閡的路徑】
電玩公司「赤燭」分別於2017年與19年推出兩款遊戲,分別是【返校】與【還願】,這兩部作品皆以台灣人熟悉的歷史與文化做為基底,描述庶民在大時代之下遭遇的悲劇。
這兩部電玩作品對於資深的核心玩家來說,難度絕對只是皮毛,甚至會覺得毫無遊戲性可言。但因為使用了普羅社會大眾都關心的社會議題當題材,吸引了原本不是玩家的消費者,更跨越了原本電玩的限制,成為一種社會現像,將電玩的難度降低到微乎其微,讓過往不習慣電玩媒介的人可以輕易上手。雖然說這兩款遊戲沒有難度,但強大的文本能力還是能讓人投入其中。
在過去所謂的威權體制留下的傷痕,只能用苦悶的藝術形式來闡述從未癒合的悲劇,但隨著電玩媒體的普及,我們能用更有娛樂性的方式,去認識被刻意掩蓋的回憶。這些我們共同擁有的歷史記憶,也成為能讓電玩跨越不同世代的溝通樞紐。
【改編電影】
因為【返校】累積了足夠的社會現像能量,它不僅受到電玩迷的熱烈討論,也受到電玩迷以外的關注,從此奠定了足以改編成電影的基礎。
【返校】電玩原作本身其實就有明確的文本與故事線,但為了符合電玩的形勢,原本可以起承轉合的劇情,被拆解成許多零散的部分,玩家就要去撿拾這些零碎的記憶,逐一拼湊出完整的故事。這些線索就像是引誘孩童到糖果屋的麵包屑,製造出一種非線性的懸疑。
好的電玩敘事手法,在於設計者不會對於玩家所操控的主角給予太多的資訊與設定,讓玩家能把自己的情感與意識投入進操控的角色上,讓玩家感覺是憑著自己的判斷與思考去完成遊戲,這種敘事手法較著重事件的設計,而並非起承轉合的線性。比較不理想的電玩形式,就是強加許多提示給玩家,牽引他們走玩刻意安排的劇情,這種電玩的編劇方式很類似電影的三幕劇結構,只是在這三幕的間格裡又塞了許多衝突事件,延展電玩內容的長度。
【返校】電玩原作的設定,巧妙地以「失憶」的形式暫時抽離了女主角方芮欣的設定,讓玩家能把自我意識投射在她的身上。隨著事件的進展,方芮欣的背景愈來預明朗,引人入勝的時代設定讓玩家漸漸地甘願把自己的意識從角色上抽離,甘願地跟隨指引完全沉浸在悲劇的氛圍裡。
【返校】雖然故事背景被設定在白色恐怖時期,但關於戒嚴的批判算是做得很隱晦,它被埋藏在遊戲探索時發現的各種文件線索裡,真正的主線還是方芮欣個人情感與家庭拉鋸的背景。當被改編成電影時,白色恐怖的背景則是被凸顯出來了。
因為電影的關係,所以必須將電玩原作非線性的敘事,轉化為明確線性的劇本結構。遊戲本身的流程,就是藉由蒐集各種符號來拼湊故事的過程,所以要如何將這些符號轉化成電影劇本的環節就很重要了。可喜的是,徐漢強導演並不會為了「忠於原作」依樣畫葫蘆,他大膽捨棄了不符合電影劇本架構的表現符號,讓電影的段落完整分明。電玩原作有不少七爺八爺、陰曹地府等許多道教信仰的場景與元素,那些元素存在的目的是用道教惡果觀呼應方芮欣的罪惡掙扎,電玩之所以這樣設定,是因為作品本身是平面的卷軸遊戲,人物的情感無法很立體的處理,所以必須用大量的符號來建構角色的情境。當被改編成電影時,演員能表現出強烈而明確的情緒,那自然就可以刪減一些意識流的暗喻符號,將空間留給角色的舒展。原作裡被輕描淡寫的角色,在電影加深了刻劃,始得電玩裡原本不連貫的情感,在大電影裡顯得更完整而有感染力。
電影的結構分三個章節,每個章節是先在死者徘徊的陰間裡,用各種符號與魔幻手法製造各種懸疑,然後在方芮欣的回憶裡解答陰間時留下的懸疑,兩者形成緊密的對照。但可能是因為大量削減道教符號的關係,第一章時為了解釋地縛靈的設定有些亂了節奏,但接下來的故事則是平穩了許多。而有些符號較欠缺鋪陳的脈絡,比如布袋戲的部分,如果觀眾對於布袋戲的角色較欠缺了解,可能會無法理解內涵。另外,可能由於要控訴白色恐怖的意圖有點明顯,部分台詞顯得有些生硬。
但整體而言,【返校】還是成功地將電影散射的結構,緊縮成一條清晰的電影劇情主軸,並不會因為要符合電玩迷的期待而自縛,在大刀闊斧的刪改下,不僅說出了屬於自己的故事,也保留了原汁原味。
【未來的命運,在過去裡】
過去沒有癒合的傷口,塑造了你未來的命運。我們依循過去的陰影,找到夢寐許久的光明。過去一直是進行式,它一直是未來的一部分。
史蒂芬史匹柏導演曾在哈佛的一場畢業典禮上演講時提到,未來的寶藏就在過去的歷史裡,他也很喜歡歷史的題材,總是用商業電影的方式,來闡揚過去為自由奮鬥的英靈,他拍攝了兩部人權相關議題的故事,【間諜橋】闡述面對蘇聯的間諜,男主角仍舊堅持間諜有權享受美國憲法的保障,不該因應輿論而改變犯人的待遇 ; 【郵報:密戰】描述新聞媒體對抗政府箝制言論自由的英雄事蹟,史蒂芬史匹柏用相當通俗的方式,讓過去民主鬥士的精神,用平易近人的方式繼續流傳在年輕世代的記憶裡。
【返校】難能可貴的是,它用了更通俗的語言來講述了很多人不堪回首的傷痛,用魔幻的形式來描述一段肅殺的慘劇。在接連失敗不斷的電玩改編電影行列中,【返校】或許能成為該類題才的模範,因為它以歷史作為與大眾溝通的橋梁,以通俗的電玩作為消弭隔閡的語言,我相信【返校】能成為台灣影史上獨一無二的經驗。
#返校
製造流程圖符號 在 製造流程圖符號在PTT/Dcard完整相關資訊 - 動漫二維世界 的推薦與評價
圖片全部顯示[教學] 流程圖(Flow Chart)常用符號說明- 免費資源網路社群繪製流程圖的軟體有很多,如Boring 之前介紹過的Cacoo ,Office 中的Visio 等, 可是今天要來 ... ... <看更多>
製造流程圖符號 在 生產流程圖在PTT/Dcard完整相關資訊 的推薦與評價
提供生產流程圖相關PTT/Dcard文章,想要了解更多生產流程表單、生產製造流程圖、製造 ... [教學] 流程圖(Flow Chart)常用符號說明- 免費資源網路社群不論是工作還是 ... ... <看更多>
製造流程圖符號 在 製造流程圖符號在PTT/Dcard完整相關資訊 - 動漫二維世界 的推薦與評價
圖片全部顯示[教學] 流程圖(Flow Chart)常用符號說明- 免費資源網路社群繪製流程圖的軟體有很多,如Boring 之前介紹過的Cacoo ,Office 中的Visio 等, 可是今天要來 ... ... <看更多>