AI 助陣醫學、防疫,個人隱私難兩全?
2021/06/09 研之有物
規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。
評論
本篇來自合作媒體研之有物,作者周玉文、黃曉君,INSIDE 經授權轉載。
AI 醫療、科技防疫的人權爭議
健康大數據、人工智慧(AI)已經成為醫療研發的新聖杯,新冠肺炎(COVID-19)更將 AI 技術推上防疫舞臺,各國紛紛串聯大數據監控足跡或採用電子圍籬。但當科技防疫介入公衛醫療,我們是否在不知不覺中讓渡了個人隱私?
中研院歐美研究所副研究員何之行認為,規範不完備是臺灣個資保護的一大隱憂,《個資法》問世遠早於 AI 時代、去識別化定義不清、缺乏獨立專責監管機構,都是當前課題。
「天網」恢恢,公衛醫療的新利器
自 2020 年新冠疫情大爆發,全世界為了因應危機展開大規模協作,從即時統計看板、預測病毒蛋白質結構、電子監控等,大數據與 AI 技術不約而同派上用場。但當數位科技介入公共衛生與醫療健康體系,也引發人權隱私的兩難爭議。
2020 年的最後一夜,臺灣再次出現本土案例。中央流行疫情指揮中心警告,居家隔離、居家檢疫、自主健康管理的民眾,都不應參加大型跨年活動。而且,千萬別心存僥倖,因為「天網」恢恢,「我們能找得到您」!有天網之稱的電子圍籬 2.0 出手,許多人拍手叫好,但也挑起國家進行隱私監控的敏感神經。
隱私爭議不只在防疫戰場,另一個例子是近年正夯的精準醫療。2021 年 1 月,《經濟學人》(The Economist)發布亞太區「個人化精準醫療發展指標」(Personalised-health-index)。臺灣勇奪亞軍,主要歸功於健全的健保、癌症資料庫及尖端資訊科技。
國際按讚,國內反應卻很兩極。早前曾有人質疑「個人生物資料」的隱私保障,擔憂是否會成為藥廠大數據;但另一方面,部分醫療研究者卻埋怨《個人資料保護法》(簡稱《個資法》)很嚴、很卡,大大阻擋了醫學研發。為何國內反應如此分歧?
中研院歐美所副研究員何之行認為,原因之一是,
《個資法》早在 2012 年就實施,跑在 AI 時代之前,若僅僅仰賴現行規範,對於新興科技的因應恐怕不合時宜。
健保資料庫爭議:誰能再利用我們的病歷資料?
來看看曾喧騰一時的「健保資料庫訴訟案」。
2012 年,臺灣人權促進會與民間團體提出行政訴訟,質疑政府沒有取得人民同意、缺少法律授權,逕自將健保資料提供給醫療研究單位。這意味,一般人完全不知道自己的病例被加值運用,侵害了資訊自主權。案件雖在 2017 年敗訴,但已進入大法官釋憲。
民間團體批評,根據《個資法》,如果是原始蒐集目的之外的再利用,應該取得當事人同意。而健保資料原初蒐集是為了稽核保費,並非是提供醫學研究。
但支持者則認為,健保資料庫是珍貴的健康大數據,若能串接提供學術與醫療研究,更符合公共利益。此外,如果過往的數據資料都必須重新尋求全國人民再同意,相關研發恐怕得被迫踩剎車。
種種爭議,讓醫學研究和資訊隱私之間的紅線,顯得模糊而舉棋不定。何之行指出,「個人權利」與「公共利益」之間的權衡拉鋸,不僅是長久以來政治哲學家所關心的課題,也反映了現代公共衛生倫理思辨的核心。
我們有權拒絕提供資料給醫療研究嗎?當精準醫療的腳步飛也似向前奔去,我們要如何推進醫學科技,又不棄守個人的隱私權利呢?
「精準醫療」與「精準健康」是近年醫學發展的重要趨勢,透過健康大數據來評估個人健康狀況,對症下藥。但健康資料涉及個人隱私,如何兼顧隱私與自主權,成為另一重要議題。
去識別化爭點:個資應該「馬賽克」到什麼程度?
何之行認為,「健保資料庫爭議」短期可以從幾項原則著手,確立資料使用標準,包括:允許退出權(opt-out)、定義去識別化(de-identification)。
「去識別化」是一道安全防護措施。簡單來說:讓資料不會連結、辨識出背後真正的那個人。何之行特別分享 Google 旗下人工智慧研發公司 DeepMind 的慘痛教訓。
2017 年,DeepMind 與英國皇家醫院(Royal Free)的協定曝光,DeepMind 從後者取得 160 萬筆病歷資料,用來研發診斷急性腎衰竭的健康 APP。聽來立意良善的計畫,卻引發軒然大波。原因是,資料分享不僅未取得病患同意,也完全沒有將資料去識別化,每個人的病史、用藥、就醫隱私全被看光光!這起爭議無疑是一大教訓,重創英國社會對於開放資料的信任。
回到臺灣脈絡。去識別化指的是以代碼、匿名、隱藏部分個資或其他方式,無從辨識特定個人。但要達到什麼樣的隱匿保護程度,才算是無從識別特定個人?
何之行指出,個資法中的定義不甚清楚,混用匿名化(anonymous)、假名化(pseudonymised)、去連結(delink)等規範程度不一的概念。臺灣也沒有明確定義去識別化標準,成為爭點。
現行法令留下了模糊空間,那麼他山之石是否能提供參考?
以美國《健康照護可攜法案》(HIPAA)為例,法案訂出了去除 18 項個人識別碼,作為去識別化的基準;歐盟《一般資料保護規則》則直接說明,假名化的個資仍然是個人資料。
退出權:保留人民 say NO 的權利
另一個消解爭議的方向是:允許退出權,讓個人保有退出資料庫的權利。即使健保資料並沒有取得民眾事前(opt-in)的同意,但仍可以提供事後的退出選項,民眾便有機會決定,是否提供健康資料做學術研究或商業運用。
何之行再舉英國國民健保署 NHS 做法為例:英國民眾有兩階段選擇退出中央資料庫 (NHS Digital)的機會,一是在一開始就拒絕家庭醫師將自己的醫病資料上傳到 NHS Digital,二是資料上傳後,仍然可以在資料分享給第三方使用時說不。畢竟有人願意為公益、學術目的提供個人健康數據,對商業用途敬謝不敏;也有人覺得只要無法辨識個人即可。
近年,英國政府很努力和大眾溝通,希望民眾認知到資料分享的共善,也說明退出所帶來的社會成本,鼓勵人們留在資料庫內,享受精準醫療帶給個人的好處。可以看到英國政府藉由公眾溝通,努力建立社會信任。
參照英國經驗,目前選擇退出的比率約為 2.6%。保留民眾某種程度的退出權,但善盡公眾溝通,應是平衡集體利益與個人隱私的一種做法。
歐盟 GDPR 個資保護的四大原則
健保資料庫只是案例之一,當 AI 成為大數據浪潮下的加速器,最周全之策仍然是針對 AI 時代的資料運用另立規範。 歐盟 2018 年實施的《一般資料保護規則》(General Data Protection Regulation,以下簡稱 GDPR),便是大數據 AI 時代個資保護的重要指標。
因應 AI、大數據時代的變化,歐盟在 2016 年通過 GDPR,2018 年正式上路,被稱為「史上最嚴格的個資保護法」。包括行動裝置 ID、宗教、生物特徵、性傾向都列入被保護的個人資料範疇。
歐盟在法令制定階段已將 AI 運用納入考量,設定出個資保護四大原則:目的特定原則、資料最小化、透明性與課責性原則。
其中,「目的特定」與「資料最小化」都是要求資料的蒐集、處理、利用,應在特定目的的必要範圍內,也就是只提供「絕對必要」的資料。
然而,這與大數據運用需仰賴大量資料的特質,明顯衝突!
大數據分析的過程,往往會大幅、甚至沒有「特定目的」的廣蒐資料;資料分析後的應用範圍,也可能超出原本設定的目標。因此,如何具體界定「特定目的」以及後續利用的「兼容性判斷」,便相當重要。這也突顯出「透明性」原則強調的自我揭露(self-disclosure)義務。當蒐集方成為主要的資料控制者,就有義務更進一步解釋那些仰賴純粹自動化的決策,究竟是如何形成的。
「透明性原則的用意是為了建立信任感。」何之行補充。她舉例,中國阿里巴巴集團旗下的芝麻信用,將演算法自動化決策的應用發揮得淋漓盡致,就連歐盟發放申根簽證都會參考。然而,所有被納入評分系統的人民,卻無從得知這個龐大的演算法系統如何運作,也無法知道為何自己的信用評等如此。
芝麻信用表示,系統會依照身分特質、信用歷史、人脈關係、行為偏好、履約能力等五類資料,進行每個人的信用評分,分數介於 350-950。看似為電商系統的信用評等,實則影響個人信貸、租車、訂房、簽證,甚至是求職。
這同時涉及「課責性」(accountability)原則 ── 出了問題,可以找誰負責。以醫療場域來講,無論診斷過程中動用了多少 AI 工具作為輔助,最終仍須仰賴真人醫師做最後的專業判斷,這不僅是尊重醫病關係,也是避免病患求助無門的問責體現。
科技防疫:無所遁形的日常與數位足跡
當新冠疫情爆發,全球人心惶惶、對未知病毒充滿恐懼不安,科技防疫一躍成為國家利器。但公共衛生與人權隱私的論辯,也再次浮上檯面。
2020 年 4 月,挪威的國家公共衛生機構推出一款接觸追蹤軟體,能監控足跡、提出曾接觸確診者的示警。但兩個月後,這款挪威版的「社交距離 APP」卻遭到挪威個資主管機關(NDPA)宣告禁用!
挪威開發了「Smittestopp」,可透過 GPS 與藍牙定位來追蹤用戶足跡,提出與感染者曾接觸過的示警,定位資訊也會上傳到中央伺服器儲存。然而,挪威資料保護主管機關(NDPA)宣告,程式對個人隱私造成不必要的侵害,政府應停止使用並刪除資料。
為何挪威資料保護機關會做出這個決定?大體來說,仍與歐盟 GDPR 四大原則有關。
首先,NDPA 認為挪威政府沒有善盡公眾溝通責任,目的不清。人民不知道這款 APP 是為了疫調?或者為研究分析而持續蒐集資料?而且,上傳的資料包含非確診者個案,違反了特定目的與資料最小蒐集原則。
此外,即便為了防疫,政府也應該採用更小侵害的手段(如:僅從藍牙確認距離資訊),而不是直接由 GPS 掌控個人定位軌跡,這可能造成國家全面監控個人行蹤的風險。
最後 NDPA 認為,蒐集足跡資料原初是為了即時防疫,但當資料被轉作後續的研究分析,政府應主動說明為什麼資料可以被二次利用?又將如何去識別化,以確保個資安全?
換言之,面對疫情的高度挑戰,挪威個資保護機關仍然認為若沒有足夠的必要性,不應輕易打開潘朵拉的盒子,國家採用「Smittestopp」這款接觸追蹤軟體,有違反比例原則之虞。
「有效的疫情控制,並不代表必然需要在隱私和個資保護上讓步。反而當決策者以防疫之名進行科技監控,一個數位監控國家的誕生,所妥協的將會是成熟公民社會所賴以維繫的公眾信任與共善。」何之行進一步分析:
數位監控所帶來的威脅,並不僅只於表象上對於個人隱私的侵害,更深層的危機在於,掌握「數位足跡」(digital footprint) 後對於特定當事人的描繪與剖析。
當監控者透過長時間、多方面的資訊蒐集,對於個人的「深描與剖繪」(profiling)遠遠超過想像──任何人的移動軌跡、生活習慣、興趣偏好、人脈網絡、政治傾向,都可能全面被掌握!
AI 時代需要新法規與管理者
不論是醫藥研發或疫情防控,數位監控已成為當代社會的新挑戰。參照各國科技防疫的爭論、歐盟 GDPR 規範,何之行認為,除了一套 AI 時代的個資保護規範,實踐層面上歐盟也有值得學習之處。
例如,對隱私風險的脈絡化評估、將隱私預先納入產品或服務的設計理念(privacy by design),「未來照護機器人可能走入家家戶戶,我們卻常忽略機器人 24 小時都在蒐集個資,隱私保護在產品設計的最初階段就要納入考量。」
另外最關鍵的是:設置獨立的個資監管機構,也就是所謂的資料保護官(data protection officer,DPO),專責監控公、私營部門是否遵循法規。直白地說,就是「個資警察局」。何之行比喻,
如果家中遭竊,我們會向警察局報案,但現況是「個資的侵害不知道可以找誰」。財稅資料歸財政部管,健康資料歸衛福部管,界定不清楚的就變成三不管地帶。
綜觀臺灣現狀,她一語點出問題:「我們不是沒有法規,只是現有的法令不完備,也已不合時宜。」
過往許多人擔心,「個資保護」與「科技創新」是兩難悖論,但何之行強調法令規範不是絆腳石。路開好、交通號誌與指引完善,車才可能跑得快。「GDPR 非常嚴格,但它並沒有阻礙科學研究,仍然允許了科學例外條款的空間。」
「資料是新石油」(data is the new oil),臺灣擁有世界數一數二最完整的健康資料,唯有完善明確的法規範才能減少疑慮,找出資料二次利用與科技創新的平衡點,也建立對於資料二次利用的社會信任。
資料來源:https://www.inside.com.tw/article/23814-ai-privacy-medical?fbclid=IwAR0ATcNjDPwTsZ4lkQpYjvys3NcXpDaqsmE_gELBl_UNu4FcAjBlscxMwss
生物資料庫倫理 在 醫師立委邱泰源 Facebook 的最讚貼文
維護人民健康生命權益 前瞻發展精準醫療保健
智慧關懷醫界共創價值 邁向產官學及人民多贏
-2020/12/1,邱泰源委員理事長應邀參加台灣精準醫療及分子檢測產業協會會員大會及論壇,盛況空前,呈現台灣生醫領域前瞻發展的熱情與實力。
-會議開始由李鍾熙理事長致詞,說明相關產業發展情況。科技部吳政忠部長致詞時表示,生醫與資通訊是台灣具有競爭的行業,發展「精準健康產業」具有潛力,政府也將會協助加速產業發展。
-邱委員致詞時強調除了產官學合作外,立法以及醫療專業上的加入,亦是相關領域發展順利的關鍵。邱委員肯定吳部長及協會幹部及生醫相關領域專業人士對國家的貢獻,也特別感謝吳部長協助新竹台大生醫園區醫院的設立,落實蔡英文總統的政見。邱委員表示台灣五萬名醫師及其團隊正朝向維護人民最佳健康及生命權益而努力,感謝生醫相關產官學的人士長期的投入,提升醫療照護品質。期望未來能夠攜手合作,發揮台灣隊團隊力量,達成照顧全民健康的目標。
-目前擔任醫師全聯會理事長的邱委員也表示,四年前世界醫師會大會在台灣舉辦時發表了「台北宣言」,闡述生物資料庫(Biobank)的倫理規範,已成為世界醫療史的里程碑。而生醫發展也必須重視學術研究以及相關科系師生專業生涯的發展空間。除此外,在生醫產業發展方面,邱委員也都願意在立法院給予最大的協助。
-而人民健康的維護,需要更多的努力,才能在有限的資源裡面,以智慧、關懷創造出最大價值。期望台灣未來,除了加強醫療資源外,更能以最有效率的醫療體系,讓民眾在合理負擔下,接受到全世界最好的醫療保健照顧。(俊良、容維)
生物資料庫倫理 在 李開復 Kai-Fu Lee Facebook 的精選貼文
近日,我與阿萊克斯·彭特蘭教授(Alex Pentland)展開了一場”AI如何重塑人類社會”的精彩對話。
《連線》雜誌的資深撰稿人威爾·奈特(Will Knight)主持了這場對話。
阿萊克斯·彭特蘭教授任教于麻省理工學院,為全球大資料權威專家之一,現任MIT連接科學研究所主任、MIT媒體藝術與科學教授,擁有“可穿戴設備之父”、《福布斯》“全球七大權威大資料專家”、《麻省理工科技評論》“年度十大突破性科技”兩度桂冠獲得者等頭銜,曾參與創建MIT媒體實驗室,是全球被引述次數最多的計算科學家之一。
對話金句:
李開復:
AI最大的機會蘊藏在與傳統企業的結合中,這種價值的產生極其迅速,只需要幾個月,甚至短短幾周。
未來突破很難預測,對奇點、超級智慧的爭辯,在我看來都過於樂觀了。
小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,不要與巨頭核心業務正面硬碰。
阿萊克斯·彭特蘭:
AI絕非試圖取代人類,而是促進多元文化之間的相互連接、團隊合作,讓人們更好的進行社交和連接彼此。
最困難的其實是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。
我在對話中表示,當我們試圖解決AI問題時,應該用技術來解決技術的問題,可以尋求與監管部門協作,而不只是丟給他們,“新技術會衍生新的問題,我們應該多方嘗試用更進階的技術性解決方案,就像電腦病毒剛出現時,殺毒軟體隨之誕生。”
彭特蘭教授認為,人工智慧的核心,是促進多元文化之間的相互連接。不只是工程師或科學家,連經濟學家、政治家都必須參與進來。“國家之間應該促進合作、制定互通標準,就像TCP/IP互聯網協定那樣,避免AI冷戰。” 我們都贊同,AI發展從來不是單打獨鬥,跨學科思維、跨領域合作尤為重要。 這場對話是麻省理工學院中國創新與創業論壇(MIT-CHIEF) 組織的高峰對話系列活動,主題是《計算與未來: AI與資料科學如何重塑人類社會》。
麻省理工學院中國創新與創業論壇(MIT-CHIEF)由麻省理工學院的中國留學生創立,至今已有十年,是北美歷史最悠久的、由高校學生組織的中國創新創業論壇。系列高峰對話邀請了頂級科學家、投資人及創業者,共同探討科技創新及商業化過程中面臨的挑戰。
以下是我們對話的核心內容,由我的同事整理、分享給大家:
Part I 主題演講
▌李開復:各方應協作,讓AI 更務實
非常榮幸再次受到MIT-CHIEF的邀請,對於人工智慧的看法,這次我主要想講四點。
第一點是我書裡的主題,人工智慧的超能力。我們已經從人工智慧的發明期步入應用期階段,從應用落地層面來說,正迎來了AI發展最大的機遇。
很多科技公司目前已對人工智慧進行了多樣化佈局,從視覺、語言、觸覺和其他感知技術,到自動化機器人、無人駕駛等,對很多領域開啟了深遠的影響。雖然眼下所見的AI應用仍有局限性,但我預測未來的格局會非常龐大,依據統計,各行各業採用AI的程度目前不到5%,AI應用的中長期增長曲線相當可期。
第二點是我很欣喜看到的一點,AI正在和傳統行業深度融合。隨著人們對人工智慧的瞭解越來越多,更多的AI公司湧現出來。
AI最大的機會蘊藏在與傳統企業的結合中,創新工場也正在説明金融、製造、物流、零售、醫療等行業的公司進行AI變革。
作為AI投資人,我認為在這些行業如果找到正確的AI應用方向,就能帶來上千萬的回報。這種商業價值的產生是極其迅速的,通常只需要幾個月,甚至短短幾周就能看到成果。
現在人工智慧在傳統產業的滲透率仍在個位數,仍然有很大的提升空間。然而對於很多公司來說,它們需要的是高度定制化的方案,而非通用型AI方案,所以融合的過程中,不可避免會遇到不少挑戰和痛點。
第三,我早年做過很多科研工作,很高興能看到關於系統一和系統二(System One, System Two)的討論,我們期待人工智慧技術從系統一升級為系統二,即從識別、決策、優化等能力,升級到感知、認知等進階智慧的能力。
有不同的學派都在努力讓人工智慧更接近人類智慧,其中一個流派主張回歸經典的AI理念,甚至重新構建嶄新的模型結構,在深度學習技術的基礎上利用人類的知識。但我更支持另一個理論——深度學習的潛力還沒有完全釋放。
回看人工智慧過去60多年的歷程,最大的突破來自於計算能力和資料量大增而產生的可擴展演算法。我們看到了卷積神經網路(CNN)帶來的喜人成績,還有預訓練自然語言處理模型(Pre-Trained Models for Natural Language Processing)的廣泛運用。
預訓練模型與人類語言學習的模式類似,不管是英語還是中文,在習得這些語言之後,再去學習程式設計、藝術、化學。在無人監督的學習環境中,這種模式比我們想像得還要強大,就像阿爾法圍棋(AlphaGo)一樣。
最後一點我想說的是,如何讓AI變得更務實。
AI有很多問題,例如隱私、資料安全、治理和監管,在此就不一一討論了。當我們試圖解決這些AI難題時,有人認為讓監管部門加強管理是唯一辦法,其實不然,我們是否也可以朝著研發更厲害的技術性解決方案去努力?
就像電腦病毒剛出現時,殺毒軟體隨之誕生;面對千年蟲難題時,也迅速找到了技術應對方案。我們可以通過研發新技術,應對DeepFake深度換臉程式的挑戰;或者通過聯邦學習技術,在保證資料私密性的同時,滿足深度學習訓練需求。
作為握有技術能力的群體,我們需要與監管部門一起協作,而不只是把工作丟給他們。相信有了各方的助力,我們可以讓AI的應用變得更有深度,更加務實,更高效地克服現在面臨的種種問題。
▌阿萊克斯·彭特蘭:國家間應建立互通標準,避免“AI冷戰”
我對當前的深度學習技術不太樂觀。
最為主要原因是,深度學習不僅需要龐大的資料來源,而且要求這些資料長時間恒定不變,以保證模型訓練結果的可靠性,例如人類的面容、語言,就是相對穩定不變的資料來源。
但深度學習卻沒法應對快速變化的真實情況。亞馬遜在新冠疫情蔓延速度暴增時,出現了倉庫貨物緊缺,不得不停止送貨服務。這種經過深度學習高度優化後的系統發生崩潰,就是因為快速變化的疫情,和深度學習對恒定資料來源的需求是矛盾的。
另外,我想談談如何通過聯邦學習,促進資料的流通。
大多數公司沒有足夠豐富的資料,需要聯合不同的資料來源。基於這種需求,出現了很多新商業模式,比如“資料經紀人”——他們不出售資料,而是把資料借出去,作特定需求的使用。
“資料經紀人”業務湧現了很多,他們促進了資料的流通,也加強了資料的隱私性。因此,像聯邦學習這樣的技術和商業策略結合,有效解決了資料在合規性和所有權方面的難題。
聯邦學習也依賴於新的基礎設施建設,為資料應用和深度學習提供基礎環境,比如區塊鏈技術。現在世界上很多國家在做相關系統的建設實驗,新加坡等國家設置了一種相互競爭的區塊鏈系統,來解決支付和物流問題。我們最近也幫助瑞士做了類似的實驗,涉及不同資料的互通性和連貫性問題。
我們仍在研究如何用儘量少的資料,實現人工智慧的目標。少量資料是指不斷更新的短期資料,這些資料能使AI應對迅速變化的情況,並及時做出調整。
我們打算將AI與其他基礎科學結合,例如阿爾法圍棋(AlphaGo)就是這類結合的初步嘗試。這些方法不依賴于大量恒定資料,可能會比深度學習更加強大。
除此之外,我們在探討用AI保障聯邦學習過程中不同資料方的權益,這是實現不同國家之間的互通性、支付信任度、物流運輸等方面合作的關鍵前提。
另一方面,我們探索如何將AI技術應用於加密資料上。我們和大公司以及政府密切合作,找出解決系統入侵和保障網路安全的方法。
我同時花了很多時間研究與政府的合作。政府很多時候不知道如何通過大資料做決策,也不知道如何進行資料優化。而AI能夠幫助政府實現更高的效率,比如聯合國現在已經有了很多可持續發展目標的相關評估指標,世界經濟論壇也可以為會員國提供不同的標準測算。
基於我們已有的多中繼資料庫,現在可以利用AI實現全新的資料優化方式,將貧困、不平等這種之前無法量化的指標,通過可量化的指標進行評估。
同時,要真正實現這個目標,我們還需要制定統一的互通性標準。如果沒有這個標準,國家之間就不會相互信任去合作,就可能出現AI冷戰。
因此我們需要找到促進合作的方式,就像TCP/IP互聯網協議那樣。而之前我提到的,新加坡、瑞士等現在正在嘗試的區塊鏈系統,將有希望解決國家間缺乏互通標準的問題。
Part II 對話
▌ 美國線上教育發展難度更大,只在ZOOM上講課是不夠的
Q1:疫情加速了行業的改變,遠端醫療、線上教育開始蓬勃發展,這只是AI對人類社會產生影響的冰山一角。想請兩位談一談,目前看好AI在哪些領域應用的未來前景?
李開復:疫情的確對整個社會產生了實質性的影響,人們行為習慣發生了很多改變,更願意接受線上學習和工作了。
這種新的行為習慣產生了大量資料流程,為AI應用帶來了更多可能性。比如大健康領域以及遠端醫療中所產生的資料,可以訓練更智慧的模型。同時更多人開始在基因組學、新藥研發方面結合新的AI技術進行研究,因此我相信AI在醫療健康領域的潛能是非常巨大的。
AI與教育的結合也很值得期待。一方面可以説明老師處理重複性的日常事務,例如批改作業,讓老師得以將時間精力投入到更有創造性的事情上,能更悉心地為孩子提供優質教學。另一方面可以提高學生的課堂參與度和積極性,比如設置卡通版AI虛擬老師,讓課程充滿趣味性。
在中國,有很多線上教育公司在疫情之前就已經發展迅速,像創新工場投資的VIPKID,讓國外的純正英語老師線上上教授中國學生。目前,中國的線上教育已經擴展到了更多科目,包括體育、舞蹈、書法等素質教育課程。
相比之下,美國線上教育發展的難度會更大。畢竟只在ZOOM上講課是不夠的,好的線上教育必須要有好的內容。
▌AI核心是增強人際互聯,應注重文化多樣性
阿萊克斯·彭特蘭:李開復博士提到的教育案例,我不是很認同。
MIT大約20年前就在教育中使用AI,重點根本不是內容,我們甚至提倡將內容免費開放給大眾。
AI絕非試圖取代人類的作用,我們更強調用AI增強人與人之間的互動,讓人們更好的社交和連接彼此。比如手機上人工智慧技術,不是要取代你,而是讓你高效地找到最適合的工作、最正確的人,讓你更容易的獲取資訊,並進行創新。
我們可以利用資料激發更強的創新力,培養領導力。只有基於這樣的宗旨,才能促進更有創造力的教育和學習,這比關注教育內容本身重要得多。
在加拿大,有家創業公司正在訓練普通民眾學習AI,比如水管工,教學效果非常不錯。他們的教育方式不是簡單的教授基本知識,而是以一種能夠激發人們互動思考的方式。
我們之前在中國調研了3000多個孵化器,發現創業公司成功的要素裡,第一個是文化多樣性,也就是說創始團隊背景的複雜性和多樣性。第二個是團隊成員專業的多樣性,他們能否發揮自己所長,並很好地進行團隊合作。
1956年,馬文·明斯基 (Marvin Minsky)提出了人工智慧這個詞。但我們對於人工智慧的理解,不應該只停留在“人工”層面,而應擴展到多元文化之間的相互連接、團隊合作,我把它叫做延伸智能(Extended Intelligence)。這也是我想強調的,人工智慧這個名詞有一定的偶然性,但它的核心點是增強人與人之間的互聯性。
▌AI未來突破難預測,奇點、超級智慧過於樂觀
Q2:未來十年AI有沒有可能取得重要突破?比如GPT-3近期展現驚人的能力。兩位認為未來的突破方向是什麼?
李開復:過去60多年來,深度學習是唯一的重大突破。在這之後,卷積神經網路(CNN)和GPT-3等都算是重要的改善,我對於人工智慧的漸進式改善保持樂觀。
對科學家來說,他們更期待著技術上的突破式進展。但我覺得未來十年基礎科研或許不會有大的突破。但模型相對容易,只要有大量的資料,就可以從實驗室進入到行業應用,CNN和GPT-3都是模型加海量資料的成果。
我是務實派的,雖然持有樂觀態度,但並不是一位“未來學家”。未來的突破很難預測,對奇點(Singularity)的爭辯,甚至預測超級智慧的出現,在我看來都過於樂觀了。
阿萊克斯·彭特蘭:我同意李博士的觀點。很多生物機制很難解釋,包括用感知認識事物、理解聲音、尋找食物等,是深度學習演算法做不到的。但深度學習可以研究科學、制定規則、研究理論,並進行實踐。
從務實的角度來說,我最感興趣的就是聯邦學習。就醫療而言,我們有這麼多醫院,在新冠疫情期間做了很多的實驗,為什麼這些實驗資料不能進行聯合呢?
儘管資料有不相容的地方,但這也是一個很好的機會去探究不同的資料之間的關聯性。在未來,我們對資料的需求也許會越來越少,外科醫生或者物理學家或許不需要太多資料,因為他們對規則已經瞭若指掌了。
▌不要墨守成規,要跨領域、跨學科應對挑戰
Q3:人工智慧會有什關鍵挑戰?對於想從事這個行業的人,有什麼是需要瞭解的關鍵點?
李開復:首先,大背景在改變,新科技層出不窮,我們每年都需要學習新的東西。
其次,人工智慧可能引起各種問題,包括偏見、歧視、倫理道德等,是否危害人類的身體健康,無人駕駛技術該何去何從等等。
第三,人工智慧的研發需要深刻地理解技術對社會、生活與人類健康會產生的影響。我非常欣賞斯坦福和MIT這樣的高校,能夠把AI教育擴展到各個學科,讓研發人員及早意識到自己的責任和價值。
阿萊克斯·彭特蘭:是的,我朋友做過一個有關電的趣味類比,電動馬達最初在工廠裡用於生產的時候,並沒有發揮出多大的作用,因為大家並不知道如何改造生產流程。
AI在一些領域發揮的作用是顯著的,但應用到其他領域時,就需要改造流程。很多情況下,最困難的就是說服人們改變商業流程去使用AI,因為大多數人是墨守成規的。
而有意思的是,就像李博士提到的,像MIT和斯坦福這樣的高校確實在認真嚴肅地對待這個問題。
比如,我今天早上正好就這個話題跟G20領導人對話,大家一致認為我們必須從跨領域、跨學科的角度去面對這個問題,不能只是工程師或者社會科學從業者們在做,經濟學家,政治家等等都必須參與進來緊密合作。
隨著AI的應用領域越來越廣,除了必須具備強有力的技巧來建立社會規則,還需要對研究經費、企業投入等進行各種調整。
▌雖然大公司實力不容小覷,但依舊對小公司抱有期待
Q4:AI研究會消耗大量的資源,我們是否應該將資源往學術界平衡?現在已經發生資源的重新分配和平衡了嗎?
李開復:就人才而言,現在已經有重新平衡的跡象了。
過去,頂尖大學的學者基於待遇和種種考量,不少選擇去企業界工作。而近期,曾任職於百度、海爾、位元組跳動等公司的數位優秀AI科學家已經回歸高校。
但像GPT-3這樣的技術,仍然不是大學和小公司能支付得起的。支撐GPT-3運行的電腦是世界算力第五的超級電腦。每進行一次演算法訓練,就要花費460萬美金,只有像騰訊、穀歌、微軟這個級別的公司才能負擔得起如此強大的算力。
我觀察到,近年的AI創業公司已經和5年前截然不同了。它們一般由AI科學家和商業人才共同創建,為了解決特定問題而生,並非紙上談兵做突破性科研,切入的領域也往往是巨頭公司忽略的地方。
例如,為製造業進行AI賦能,不是一件輕鬆的事,需要去工廠實地勘查,瞭解運作方式。大公司因為賺錢很容易,不願意做這些性價比低的苦活累活。這些小公司的努力一旦有了成果,就會給產業界帶來革命性的影響。所以,雖然大公司的實力不容小覷,但我依舊對小公司抱有期待。
阿萊克斯·彭特蘭:大學和公司是一種融合的關係,不僅體現在人才流動上,也會進行資訊資源分享,彼此是整體性的合作態勢。
當然這也不是絕對,產業界的保密需求還是存在的,只是從學校的出發點來說,我們願意毫無保留地為大家提供更好的研究成果,並與企業合作,形成標準化平臺。
▌人工智慧取代人類需要上百年或更久
Q5:兩位認為什麼是AI不能取代的?
李開復:一類是創造力、分析能力、邏輯辯論能力,瞭解自己知道什麼不知道什麼,這些是人工智慧無法取代的。另外一類是同理心,人類之間的信任、友誼,自我認知、意識等。
阿萊克斯·彭特蘭:人工智慧有朝一日可以取代人類所有的能力,但是這個過程會非常漫長,可能需要上百年或更久。
▌AI創業建議I:找到小切入點,不要與巨頭正面硬碰
Q6:李博士提到了AI在小企業中的運用,可否再舉例說明是如何運用的?
李開復:這個問題分兩部分:一個是小型AI公司與巨頭競爭,我的建議是找准巨頭沒有平臺優勢的細分領域,為某個針對性產業創造價值,並且不要與巨頭核心業務正面硬碰。
對於那些中小型非AI、但想應用AI的公司,需要確保有足夠的資料,以訓練與核心商業價值掛鉤的AI模型,並且有願意變革的開放性公司文化。
所以,早期應用AI的公司可能規模較大,因為他們有足夠大的資料,和可相容變革的商業模型。每個例子都不同,不是任何一家公司都要應用AI。
阿萊克斯·彭特蘭:如果我們放寬AI的定義,或許水管工、合同工都有資料,通過一些簡單的分析、整合,AI也可以在很大程度上改進他們的工作。
這些都是很小的切入點,基於簡單的AI分析、機器學習,依舊可以產生巨大的潛力。
▌ AI創業建議II:知曉技術,同時理解商業
Q7:兩位再分享一下最後的建議?
李開復:我們在步入一個AI開始滲透到方方面面的令人振奮的時代,我希望所有的學生們都能參與到這個改革浪潮中。要深刻地理解人工智慧的商業落地,而不僅僅鑽研技術本身。
阿萊克斯·彭特蘭:不要太較真於深度學習或者冗長的演算法,一切始於要解決的現實問題。不要止步於技術本身,要明白資料類型、形態和規律,關注商業流程。
感謝葉樂斐、劉諾、藍萱、張昊、陳冬傑、劉子昂、張梓煜、錢淩寒、水一方、沈雍在校譯和審閱上對本文的貢獻。
生物資料庫倫理 在 臺灣人體生物資料庫告知同意_國語版- YouTube 的推薦與評價
臺灣人體 生物資料庫 告知同意_國語版. Watch later. Share. Copy link. Info. Shopping. Tap to unmute. If playback doesn't begin shortly, ... ... <看更多>
生物資料庫倫理 在 2020-TaiwanBiobank 臺灣人體生物資料庫宣傳影片 - YouTube 的推薦與評價
本計畫由衛生福利部委託中央研究院執行,為了找到國人慢性病完整的病因,促進醫學進步和為了國人及下一代健康而努力,歡迎各位來加入!!#臺灣人體 生物 ... ... <看更多>