AI 時代的摩爾定律?黃氏定律靠的是自身技術力將 AI 性能年年加倍
作者 雷鋒網 | 發布日期 2020 年 12 月 16 日 8:45
1965 年,時任快捷半導體公司工程師,也是後來英特爾(Intel)的創始人之一的戈登·摩爾(Gordon Moore)提出了摩爾定律(Moore’s law),預測積體電路上可以容納的晶體管數目大約每經過 24 個月便會增加 1 倍。
後來廣為人知的每 18 個月晶片性能將提高 1 倍的說法是由 Intel CEO 大衛·豪斯(David House)提出。過去的半個多世紀,半導體行業按照摩爾定律發展,並驅動了一系列的科技創新。
有意思的是,在摩爾定律放緩的當下,以全球另一大晶片公司 NVIDIA 創始黃仁勳(Jensen Huang)名字命名的定律——「黃氏定律(Huang’s Law)」對 AI 性能的提升作出預測,預測 GPU 將推動 AI 性能實現逐年翻倍。
Intel 提出了摩爾定律,也是過去幾十年最成功的晶片公司之一。NVIDIA 作為當下最炙手可熱的 AI 晶片公司之一,提出黃氏定律是否也意味著其將引領未來幾十年晶片行業的發展?
AI 性能將逐年翻倍
受疫情影響,一年一度展示 NVIDIA 最新技術、產品和中國合作夥伴成果的 GTC China 改為線上舉行,黃仁勳缺席今年的主題演講,由 NVIDIA 首席科學家兼研究院副總裁 Bill Dally 進行分享。Bill Dally 是全球著名的電腦科學家,擁有 120 多項專利,在 2009 年加入 NVIDIA 之前,曾任史丹佛大學電腦科學系主任。加入 NVIDIA 之後,Dally 曾負責 NVIDIA 在 AI、光線追蹤和高速互連領域的相關研究。
在 GTC China 2020 演講中,Dally 稱:「如果我們真想提高電腦性能,黃氏定律就是一項重要指標,且在可預見的未來都將一直適用。」
Dally 用三個項目說明黃氏定律將如何得以實現。首先是為了實現超高能效加速器的 MAGNet 工具。NVIDIA 稱,MAGNet 生成的 AI 推理加速器在模擬測試中,能夠達到每瓦 100 tera ops 的推理能力,比目前的商用晶片高出一個數量級。
之所以能夠實現數量級的性能提升,主要是因為 MAGNet 採用了一系列新技術來協調並控制通過設備的訊息流,最大限度地減少數據傳輸。數據搬運是 AI 晶片最耗能的環節已經是當今業界的共識,這一研究模型以模組化實現能夠實現靈活擴展。
Dally 帶領的 200 人的研究團隊的另一個研究項目目標是以更快速的光鏈路取代現有系統內的電氣鏈路。Dally 說:「我們可以將連接 GPU 的 NVLink 速度提高一倍,也許還會再翻番,但電信號最終會消耗殆盡。」
這個項目是 NVIDIA 與哥倫比亞大學的研究團隊合作,探討如何利用電信供應商在其核心網絡中所採用的技術,通過一條光纖來傳輸數十路信號。據悉,這種名為「密集波分複用」的技術,有望在僅一毫米大小的晶片上實現 Tb/s 級數據的傳輸,是如今連網密度的 10 倍以上。
Dally 在演講中舉例展示了一個未來將搭載 160 多個 GPU 的 NVIDIA DGX 系統模型。這意味著,利用「密集波分複用」技術,不僅可以實現更大的吞吐量,光鏈路也有助於打造更為密集的系統。
想要發揮光鏈路的全部潛能,還需要相應的軟件,這也是 Dally 分享的第三個項目——全新程式語言系統原型 Legate。Legate 將一種新的編程速記融入了加速軟件庫和高級運行時環境 Legion,借助 Legate,開發者可在任何規模的系統上運行針對單一 GPU 編寫的程序——甚至適用於諸如 Selene 等搭載數千個 GPU 的巨型超級電腦。
Dally 稱 Legate 正在美國國家實驗室接受測試。
MAGNet、以光鏈路取代現有系統內的電氣鏈路以及 Legate 是成功實現黃氏定律的關鍵,但 GPU 的成功才是基礎。因此,GPU 當下的成功以及未來的演進都尤其重要。
GPU 是黃氏定律的基礎
今年 5 月,NVIDIA 發布了面積高達 826 平方毫米,整合了 540 億個晶體管的 7 奈米全新安培(Ampere)架構 GPU A100。相比 Volta 架構的 GPU 能夠實現 20 倍的性能提升,並可以同時滿足 AI 訓練和推理的需求。
憑藉更高精度的第三代 Tensor Core 核心,A100 GPU AI 性能相比上一代有明顯提升,此前報導,在 7 月的第三個版本 MLPerf Training v0.7 基準測試(Benchmark)結果中,NVIDIA 的 DGX SuperPOD 系統在性能上開創了 8 個全新里程碑,共打破 16 項紀錄。
另外,在 10 月出爐的 MLPerf Inference v0.7 結果中,A100 Tensor Core GPU 在雲端推理的基準測試性能是最先進 Intel CPU 的 237 倍。
更強大的 A100 GPU 迅速被多個大客戶採用,迄今為止,阿里雲、百度智能雲、滴滴雲、騰訊雲等眾多中國雲服務提供商推出搭載了 NVIDIA A100 的多款雲服務及 GPU 實例,包括圖像辨識、語音辨識,以及計算流體動力學、計算金融學、分子動力學等快速增長的高性能計算場景。
另外,新華三、浪潮、聯想、寧暢等系統製造商等也選擇了最新發布的 A100 PCIe 版本以及 NVIDIA A100 80GB GPU,為超大數據中心提供兼具超強性能與靈活的 AI 加速系統。
Dally 在演講中提到:「經過幾代人的努力,NVIDIA 的產品將通過基於物理渲染的路徑追蹤技術,即時生成令人驚豔的圖像,並能夠借助 AI 構建整個場景。」
與光鏈路取代現有系統內的電氣鏈路需要軟硬體的匹配一樣,NVIDIA GPU 軟硬體的結合才能應對更多 AI 應用場景苛刻的挑戰。
Dally 在此次的 GTC China上首次公開展示了 NVIDIA 對話式 AI 框架 Jarvis 與 GauGAN 的組合。GauGAN 利用生成式對抗網路,只需簡略構圖,就能創建美麗的風景圖。演示中,用戶可通過語音指令,即時生成像照片一樣栩栩如生的畫作。
GPU 是黃氏定律的基礎,而能否實現並延續黃氏定律,僅靠少數的大公司顯然不夠,還需要眾多的合作夥伴激發對 AI 算力的需求和更多創新。
黃氏定律能帶來什麼?
NVIDIA 已經在構建 AI 生態,並在 GTC China 上展示了 NVIDIA 初創加速計劃從 100 多家 AI 初創公司中脫穎而出的 12 家公司,這些公司涵蓋會話人工智慧、智慧醫療 / 零售、消費者網路 / 行業應用、深度學習應用 / 加速數據科學、自主機器 / IoT / 工業製造、自動駕駛汽車。
智慧語音正在改變我們的生活。會話人工智慧的深思維提供的是離線智慧語音解決方案,在佔有很少空間的前提下實現智慧交互,語音合成和語音辨識保證毫秒級響應。深聲科技基於 NVIDIA 的產品研發高質量中英文語音合成、聲音定制、聲音複製等語音 AI 技術。
對於行業應用而言,星雲 Clustar 利用 NVIDIA GPU 和 DGX 工作站,能夠大幅提升模型預測精確度以及解決方案處理性能,讓傳統行業的 AI 升級成本更低、效率更高。
摩爾定律的成功帶來了新的時代,黃氏定律能否成功仍需時間給我們答案。但這一定律的提出對 AI 性能的提升給出了明確的預測,並且 NVIDIA 正在通過硬體、軟體的提升和創新,努力實現黃氏定律,同時藉生態的打造想要更深遠的影響 AI 發展。
黃氏定律值得我們期待。
附圖:▲ NVIDIA GPU 助推 AI 推理性能每年提升 1 倍以上。(Source:影片截圖)
▲NVIDIA 首席科學家兼研究院副總裁 Bill Dally。
▲ 搭載 160 多個 GPU 的 NVIDIA DGX 系統模型。
資料來源:https://technews.tw/2020/12/16/huang-law-predicts-that-ai-performance-will-double-every-year/?fbclid=IwAR1vXHWAGt_b8nDRW6VUqzpAINX_n_DzJ0KwJvdBnl18s8Q1A3Thk7hgBoI
流體力學生活應用 在 Facebook 的最讚貼文
我們的下一代和美國pk科技,能贏在起跑線上嗎?
分享一篇我的好朋友談教育的文章,作者郝景芳是大陸知名新銳科幻作家、教育企業「童行學院」的聯合創始人,比較東西方在兒童基礎教育思維上的差異,探討我們的下一代需要什麼、而我們能為他們做什麼?
文章轉載自郝景芳的微信公眾號:晴媽說(id:qingmashuo),已獲作者轉載授權。
前一段時間,有一所學校招生的新聞悄無聲息佔據了很多關注教育的人目光C位,紛紛議論:如果是你,會送孩子去這所驚世駭俗的學校嗎?
▎從一所學校引發的討論
這是一所什麼樣的學校呢?原來是矽谷鋼鐵俠 Elon Musk 埃隆.馬斯克給自己孩子建立的私人小學,現在對外公開招生了。
消息一經發出,瞬間擠破頭。加州有1000個以上家庭遞交了申請。 (注意!這只是本校Ad Astra的分校Astra Nova,雖然課程和模式照搬了本校,但畢竟只是子品牌,就已經如此轟動了。)為什麼?
我們先來看一下這所學校入學考什麼:
試題一:首次殖民火星任務需要一位隊長。以下為六位候選人自評及他評的創造力、合作力、尋找資源力、定力、學習力、體力、意志力,七個方面的數值。
1.1 請問哪位候選人最適合擔任隊長來完成以下任務:
“存活並在火星建立基地,在兩年後返回地球。”
1.2 如果任務變成以下,誰又更適合:
“存活並在火星建立基地,使用火星的資源建立能源工廠。永久待在火星並等待三年後第二批殖民者。”
1.3 我們是否應該派人去殖民火星?為什麼?
試題二是一款自創的策略桌遊,讓孩子跟對手對戰二十次,摸清桌遊規律,並尋找出最佳策略。
哇哦,這樣的入學測試題,是不是耳目一新呢?你家小朋友會如何回答呢?
馬斯克原本建立的Ad Astra學校,只是給他的SpaceX員工家的少量小朋友辦的”子弟校“,也算是承襲了我們社會主義祖國”企業辦校“的優良傳統,有著濃濃的SpaceX企業風。那麼這所學校日常如何教學呢?
Ad Astra的學生:
- 不分年級:8-14歲的孩子一起上課
- 側重科技:學習的科目主要是編程、AI、倫理和工程
- 練習創業:每人都會建一家虛擬公司,使用學校的虛擬貨幣進行創業和交易
- 接受複雜性挑戰:模擬、案例研究、製造和設計項目、Astra Nova開發的實驗室和企業合作夥伴;學生被複雜性和解決未知問題的能力所吸引。
- 每年更新:每年根據學生和每個項目、實驗室、討論或戰略計劃的經驗教訓來重新設計。
- 讓孩子們喜歡上學:如果學生被認真對待,他們的時間被充分利用,會怎麼樣呢?
哈哈,就是赤裸裸地培養科技創業企業家啊!說不准其中就有SpaceX的繼承人,或是下一代矽谷獨角獸公司創始人。
很想了解一下,這樣直奔主題、前沿酷炫、自由創新、前途未卜、不走尋常路、偏科嚴重的學校,如果是你,會給孩子報名嗎?
▎從科技之爭引發的思考
Ad Astra對科技的重視,讓我們想到近期另一個持續火爆的話題:中國大陸的科技和西方發達國家之間到底有多大差距?
我們都知道,自從去年華為被美國針對性封鎖以來,中國科技面臨著前所未有的挑戰:敵人像窮凶極惡的野狼一樣圍追堵截,而我們在關鍵性技術——尤其是芯片上——受到了極大掣肘。美國進入了麥卡錫主義,對所有與科研有關的華人採取排擠和封鎖政策。這讓人議論紛紛、憂心忡忡、怒氣沖衝。
這引發了很多討論:大陸和發達國家的科技差距,最主要的來源是什麼?
對這個問題,我曾經寫過兩篇文章,從資金投入、資金結構、產業結構角度進行了分析:《創新中國仍然缺失的必要環節》和《特朗普貿易戰,為什麼是個教育問題》,在此不多展開。
在此只想分析一種說法:“中國科研起步晚、投入少,暫時落後很正常,只要持續花錢投入,假以時日,一定能全方位超越歐美髮達國家。”
這種說法聽起來很有道理,但是深入分析就會發現問題:如果認為中國20年後科研水平將全方位超越歐美發達國家,那就意味著,20年後,中國的科研主力軍實力水平要全面超越於歐美髮達國家科研主力軍之上,進一步推論,這就意味著,今天10歲的中國孩子,未來的科研能力要全面超越於今天10歲的歐美孩子。
是這樣嗎?我們的少年真能贏在科研的起跑線上嗎?
我向大家推荐一本書:《Cycles of Invention and Discovery——Rethinking the Endless Frontier》,是一本深入回顧科學和科技創新的研究,有不少紮實的工作和洞見(尤其推薦其中講貝爾實驗室的部分)。
這本書裡詳細回顧了現代半導體和通信工業的發展歷程,其中重大的成果節點包括:
- 1956年諾貝爾獎(1947/48年成果):晶體管的發現/發明;
- 1964年諾貝爾獎(1954/58年成果):量子電子學的發展引發激光的發現/發明;
- 1985年諾貝爾獎(1980年成果):量子霍爾效應的發現;
- 1998年諾貝爾獎(1982年成果):帶有分數電荷的新型量子流體的發現;
- 2000年諾貝爾獎(1957/63/70年成果):半導體異質結構的發明;
- 2009年諾貝爾獎(1966年成果):光纖波導的發明;
可以看得出來,這裡面有兩個非常明顯的現象:
1)發達的信息工業背後,是強大的基礎研究作為水下冰山;
2)發現和發明往往先於工業應用很多年。
晶體管的發現/發明(1948年)先於英特爾公司成立20年(1968年),更早於286芯片上市(80年代)。再往前追溯,晶體管的前身電子管,是1884年的想法,1904年的專利。是100多年持續不間斷的強大的基礎研究才導向今天發達的工業應用。那是什麼力量帶來了這樣強大的基礎研究?
基礎研究不同於應用研究。應用研究通常是把所有能獲取的科學成果整合在一起。結果是可控的、時間是可控的、成本是可控的、方向是可控的。但是基礎研究不是這樣。基礎研究方向是完全不確定的,它的目標就是發現和理解,是向未知前行。站在歷史節點上,我們會發現:
半導體的發現不是為了電腦,是法拉第發現了異常電阻現象;電磁波的發現不是為了手機,是麥克斯韋從數學上整合電現象和磁現象;流體力學方程不是為了飛機,是伯努利為了解釋水流速不同的現象;激光的預言不是為了光纖和武器,是愛因斯坦發現的光電效應和量子力學能級理論的推演。
所有這些帶來劃時代改變的重大發現,都是為了解釋自然現象、探索基本規律,背後是抽象思想帶來的快感,是科學家對自然不斷追問的樂趣。
▎教育系統需要作出的改革和困難
從前面的梳理我們可以看到,真正劃時代的重大發現,都是去解決未知問題。但是我們目前的教育,讓學生練習的都是“解決已知答案的問題”,而不是“解決未知答案的問題”。我們練就了孩子們猜測出題人心思的能力,但是真正面對複雜未知的自然,該如何思考和探索,孩子們是毫無概念的。
真正好的基礎教育,是讓孩子學習探索未知問題。這種教育需要教孩子的是探索問題的方法,而不是直接記住答案。
馬斯克在接受采訪時說過,如果你想教別人如何使用引擎,你應該把引擎給他們,讓他們自己動手拆卸,而不是簡單地在教科書上閱讀螺絲刀和汽車的知識。如果一個孩子把引擎拆開,他們會明白所有的部分是如何一起工作的,他們會明白整體,而不是部分。
我們的傳統教育是告訴孩子電磁感應定律是什麼,然後讓孩子通過左右手定則做練習題,而真正培養創新者的教育,應該反過來:讓孩子理解法拉第到底在探索什麼問題,他觀察到什麼,他是怎樣想問題的,是怎樣提出理論猜想,怎樣做實驗驗證,遇到什麼挫折,又是怎樣找到答案,最後得出電磁感應定律。
也就是說,傳統教育是從知識出發,培養創新者的教育是從探索出發,讓知識作為結果。
我們有多少課堂帶孩子了解過科學定律的發現過程?我們有多少學生知道,胡克是為什麼研究彈簧?伽利略是為什麼研究慣性?如果不知道科學探索背後的思維邏輯,就很難做出未來的創新。可是引領孩子探索知識的發現過程太花時間了,沒有哪個課堂有這樣的耐心。
對比中美教育創新,會發現,我們的基礎教育改革實在是太慢了、太難了,不要說一所像Ad Astra這樣顛覆式創新的學校,就連做一些教材和教學法方面的改革,都舉步維艱。
制度政策先不說,人才培養方面,能夠做“以問題為引導”“探究式教學”設計的老師就十分稀缺;考核方式方面,目前之所以只強調應試,是因為其他教學方式缺乏統一評價標準,給舞弊開了口子;教育出路方面,現在仍然只有高考一條路能導向好的職場發展,缺乏和新興職場發展的鏈接;社會環境方面,現在整個大環境都急功近利,讓父母也充滿焦慮。這些方面都讓真正開創性的教育探索困難重重。
▎致力培養下個時代的革新者
我之所以創辦童行學院,就是希望在中國也能做一些面向下個時代培養創新者的事情。辦學校不容易,我們就辦課外學校。
童行學院採取線上課的方式,給孩子項目制的實踐機會,培養孩子知識、視野、思維,並讓孩子感受並學習科學、人文、藝術背後的思維方法。童行學院的所有課程和引導理念,都是以問題為出發,問題驅動的學習。我們在時空之旅課程裡,帶孩子探訪科學家,回到科學發現的現場,跟科學家一起發現知識。這種“問題驅動——激發好奇——引導思考——培養思維——學習知識”的教學思路,是一種從根本出發的教學方式。
在童行學院的“火星探索”項目制學習營中,有一個環節是讓孩子探索“如何讓火星車減速,安全抵達火星”。我們讓孩子準備一個煮雞蛋,用生活中各種能想到的材料,想辦法讓煮雞蛋從高空中落下而不摔碎。孩子通過動手,再和老師討論,會真正理解火星探索過程中的挑戰,也會對重力/空氣阻力/緩衝等等物理概念充滿好奇,熱情發問。
我們希望有更多同路人參與,我們會積極尋找志同道合的合作者,也希望更多家庭和孩子加入我們。
流體力學生活應用 在 Johntool-工具王阿璋 Facebook 的最佳解答
【#工程師之路】電機系vs機械系 到底哪裡不一樣?
機械系跟電機系到底有什麼差別🤔?
很多人都誤以為機械系是做黑手,才沒那麼簡單呢❌!
#機械工程學系
其實在日常生活中,常常可以見到機械,只是我們沒有發覺罷了,從剪刀✂、跑車🏎、再到現在最夯的機器人🤖,其實都是機械。
也難怪機械系和電機系會成為二類組熱門科系,就讓我來帶你分辨吧🙋♂!
👉機械系是以力學為本,偏向設備製程方面。
#成大機械系
以成大機械系為例,課程分為五大組,
1⃣固體力學:研究應用力學(含靜力學、動力學)、材料力學、機械振動學、高等材料力學等
2⃣熱流科學與能源:研究流體流動、熱傳導、熱對流、熱輻射、燃燒等基礎理論與應用技術;
3⃣機械設計:培養機器系統設計人才,尤其著重創造性設計,還有很酷的機器人與自動化研究室!
4⃣機械製造與材料:針對關鍵性機械零組件之材料與製造技術進行研究
5⃣機械系統自動控制:為機械與電子的結合,最知名的便是「機器人學研究」🤖,很適合喜歡自動化機械、機器人、無人搬運車、彈性製造系統以及生物醫學系統的你唷🙋♂。
☑資料參考自成大機械系網頁
#中央機械系
中央機械系是以機械為基礎,結合電子、電機、通訊、資訊、光電、生醫、材料、能源,並涵蓋新興科技領域如半導體設備、奈微米科技和綠色科技。
總共分成光機電工程、先進材料與精密製造、設計與分析三組,
光機電工程組課程著重在光電整合系統的自動化系統設計;
先進材料與精密製造組則偏向傳統機械、先進材料、精密製造及相關介面;
設計與分析組則是透過問題思考、訓練你的抽象思考與分析,完成具體「工程設計」。
☑資料參考自中央機械系網頁
#電機工程學系
電機系則有所謂的「三電一工」(電磁學、電子學、電路學、工程數學)課程,
多半是專注於半導體、晶片研發,想看更多電機系介紹,👉可以找找 #電機系vs電子系到底哪裡不一樣。
想知道更多?
【歡迎訂閱Johntool-工具王阿璋 @johntooltw ↓↓↓】
facebook► https://www.facebook.com/JohntoolTW/
instagram► https://www.instagram.com/johntooltw/
收到更多 #工程師之路 #不務正業工程師 系列!
#工程師 #跑車 #硬體 #機器人 #機械 #機械系 #電機 #電機系 #理工科系 #選系 #大學選系 #台灣 #成大 #中央 #晶片 #半導體 #化學 #電子
#分享 #share #Johntool #工具王阿璋