[睡著,也是需要能量的]
寫給時常累到睡不著的人,或很難入睡的人。
或者,總是累到斷電、斷片才甘願睡著的人。
-
下班,回家,吃飯,從前看電視,現在滑機追劇。
抬頭看看時間,覺得才十一點多,還早,
又賴了一會兒,快要凌晨十二點,趕緊洗澡。
洗澡之後,再做一點雜事,最後,睡覺。
此時,差不多十二點或一點左右。
當然,也有人在二點三點或四點。
躺下去,我的天!
竟然,睡不著了!
-
以前,縱使睡前滑手機滑到斷片、斷電。
總是,體力耗盡才好捨不得的闔上眼皮。
由於年輕,體力很好,還是嶄新的電池。
這時,還不會有睡眠障礙,也從未有睡不著的問題。
經過一段時間,有些人是好幾年的時間。
慢慢電池老化,體力大不如前,彷彿電容量衰退到只剩一半。
以前,一早出門可以撐到傍晚,現在只用到中午就快沒電了。
電是越來越充不進去、充不飽,充電速率也是越來越慢。
其實,睡著是需要能量的。
就如同,過度放電的手機,很常充電充不進去。
睡進去的瞬間,必須收攝身心與沉澱,需要啟動修復的能量。
因此,太虛弱很難啟動,反而,越累越虛,睡眠障礙越嚴重。
-
這也就是,為什麼睡前喝一些熱牛奶,可以助眠?
簡單的說,提升了胃部的熱能,感受舒適、溫暖,自然容易入睡。
睡前洗澡,也同樣是水流經過皮膚,梳理周身,洗滌身心。
自動進入私密獨處領域,配合水聲,梳理感官,整理人體能量。
當只能做一件事,更容易感受平靜、安適,再加上熱水的溫度,自然好睡。
又或者,睡前冥想、靜心,正是幫內在充電,在結束後,好好入睡。
又或者,睡前祈禱、讀本好書、聽舒緩音樂,一樣都是為自己充電。
-
建議,使用到剩下百分之二十左右的電力時,
就應該趕緊上床睡覺,雖然此時還有點精神。
但這才是最佳的充電時機、最佳的入睡時機。
那麼,你會問:如何觀察「百分之二十」的時機?
就是身體開啟「節電模式」或「省電模式」之時!
此時,處理器降頻、關閉背景程式、關閉自動提醒、螢幕轉暗。
也就是,腦袋運轉變慢、不太能思考、不太想說話、眼皮變重、視線呆滯的時候,快去睡吧,錯過了時機就容易傷到電池壽命,越來越難以充電,越來越難入睡,越來越疲勞,越來越虛弱。
-
總覺得,又把身體與心靈,描述的很簡單。
但是,也正因為,它就是如此單純和樸實。
自然而然的,就讓人很有親切感,不是嗎?
啟動電容放電 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的精選貼文
#物聯網IoT #環境感測器 #半導體製程 #金屬有機框架MOF #石墨烯Graphene #氮化鎵GaN #奈米碳管SWNT #3D列印 #環境光源感測器ALS #能源採集EnergyHarvesting #EnOcean
【感測器的硬技術】
隨著物聯網 (IoT) 環境的成熟,可與智慧型手機或電腦連接的微型化感測器亦水漲船高。在各種感測器中,電化學因其高靈敏度、快速反應和使用壽命長而具有特殊優勢,但找到可增強標的物的電極材料是挑戰所在。因應微型化需求,感測晶片開始嘗試能兼容多種奈米材料與不同半導體、有機/無機導體的電路,製程亦出現重大演進。相較於傳統矽 (Si) 或氮化鎵 (GaN) 製程,電子印刷更便於製作軟性電路和異質結構,且成本僅需 1/10、乃至 1/100。
除了化學感測器進展神速,物理層面最受矚目的當屬「飛時」(ToF) 雷射感測了,更適用於 1 公里內的近距感測。蘋果 iPhone X 已為 3D 感測打響名號,但內建紅外線測距和光感測器的螢幕「瀏海」設計,卻也因容易遮住應用程式 (APP) 而為人詬病。藉由光波來回時間與光速推算精確距離的 ToF,可補足紅外線精度低、方向性差,有顏色辨識及易受環境光源干擾的缺點;且模組較小,在電路板有限的行動裝置較具優勢。
此外,能源採集 (Energy Harvesting) 搭配充電式電池與超級電容,將太陽能、機械能或射頻能量轉化成電能,已成新興供電途徑。世界首個符合「超低功耗無線通訊」ISO / IEC 國際標準規範的 EnOcean,可收集自然界的微小能量、借助開開動作將動能轉換為電能,免去邊緣節點 (edge node) 更換電池或充電維護的不便,迄今歐美已約有 40 萬棟建築物建置。中國重慶大學亦新研發出由風力驅動、可監測風速和溫度的無線感測器。
麻省理工學院 (MIT) 則藉環境溫度變化開發「熱諧振器」,可從稀薄空氣中採集環境熱能,不須依賴陽光照射、在陰涼處亦可工作。不過,此類「就地取材」的環境能源並非隨時可得,必須善加珍惜使用;此時,感測器的工作模式及參數設定格外重要。另一個須留意的問題是:即使設有超級電容,但它可能因為過度自放電,而浪費辛苦採集到的能量。如何提高轉換效率、盡可能降低晶片本身功耗、極小化啟動電壓並妥善管理採集進來的能量是關鍵所在。
延伸閱讀:
《材料、製程、供電大躍進 感測技術一日千里》
http://compotechasia.com/a/____//2018/0415/38544.html
(點擊內文標題即可閱讀全文)
#Milara #全自動膠印系統NanoOPS #意法半導體ST #FlightSense #VL53L0 #VL53L1X #亞德諾ADI #ADP5090/5091/5092 #羅姆Rohm #恩智浦NXP
★★【智慧應用開發論壇】(FB 不公開社團:https://www.facebook.com/groups/smart.application/) 誠邀各界擁有工程專業或實作經驗的好手參與討論,採「實名制」入社。申請加入前請至 https://goo.gl/forms/829J9rWjR3lVJ67S2 填寫基本資料,以利規劃議題方向;未留資料者恕不受理。★★
啟動電容放電 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的最佳貼文
#電源設計 #可攜式裝置電池 #同步升降壓轉換器 #低壓差線性穩壓器LDO #單端主電感轉換器SEPIC #最大功率點控制MPPC
【告別多個電源轉換器!升壓、降壓同步讓系統電壓更穩定】
由於存在非理想或多個輸入電源、暫態干擾及儲存元件充放電,DC/DC 轉換器的輸入電壓往往在寬廣的範圍內產生變化,升降壓 DC/DC 轉換器是電源設計者用來因應此類變化的最有用工具之一。單一電感、同相升降壓轉換器可無縫降低或升高輸入電壓並調節輸出電壓——無論輸入高於、等於或低於輸出時,升降壓轉換器都能彈性因應,可代替兩個 IC (一個單獨的降壓轉換器或一個低壓差線性穩壓器 LDO,加上一個升壓轉換器),進而大幅度延長可攜式系統的電池壽命,亦可節省印刷電路板 (PCB) 上佔用的空間/面積。
在多個潛在電源的情況下,升降壓轉換器會依電源不同,在完全降壓或升壓模式下運行;但在電源備份應用中,儲存元件放電的放電電壓曲線橫跨所需要的固定輸出,升降壓轉換器將採兩種模式操作。除了消費性產品外,不同應用電源配置的輸入/輸出電壓範圍變化都很大;例如,標準工業電源匯流排電壓為 24V 或 12V。大多數系統都需要多個良好穩定的電源軌供電,較低電壓的電源軌一般由降壓穩壓器或 LDO 供電;不過,若是為感測器和類比元件 (運算放大器、電動機或收發器) 供電,就需要「穩定的」電源軌。
取決於電源匯流排狀態或系統組態,很多這些系統既需要降壓轉換、又需要升壓轉換;升降壓轉換器能彈性運用各種輸入電源運行,將設計中所需的電源轉換器數量和物料清單中的數目降至最低。在汽車應用中,12V 汽車電池是所有電子系統的主電源;但標稱 12V 在冷啟動時可能降至 3V、在拋載時可能上升至近 40V (受到暫態電壓抑制器的限制),這種環境對電子產品造成嚴酷考驗。很多內部系統都會遇到 24V 雙倍的電池電壓 (例如拖車快速啟動時)。這些極端電壓情況及引擎罩內可能出現的極端高溫,都要求使用堅固可靠的電子系統。
因此,採用「升降壓轉換器」產生系統電壓是審慎作法。航空/軍用環境也可能藉不同電池配置和太陽能電池板運行,故電源亦須因應非常寬廣的輸入電壓範圍;另有些應用要求接受多種不同輸入源,以便任何能源都可自動為系統供電,這類系統一般還要求寬廣的工作溫度。長久以來,既需降壓、又需升壓運行的設計一直是透過多個電源轉換器實現;儘管也能使用 SEPIC (單端主電感轉換器) 等可替代性拓撲、設計上亦較簡單,但效率比同步升降壓轉換器約低 10%,且需兩個電感和一個大電流耦合電容,將提高複雜性和潛在雜訊並縮短電池壽命。
延伸閱讀:
《以新型超低 IQ 升降壓轉換器超越傳統供電方案》
http://compotechasia.com/a/ji___yong/2017/0713/36006.html
(點擊內文標題即可閱讀全文)
#亞德諾ADI #凌力爾特Linear #LTC3115-1/-2 #LTC3114-1 #LTC3111 #LTC3112 #LTC3129 #LTC3130 #LTC3130-1
★★【智慧應用開發論壇】(FB 不公開社團:https://www.facebook.com/groups/smart.application/) 誠邀各界擁有工程專業或實作經驗的好手參與討論,採「實名制」入社。申請加入前請至 https://goo.gl/forms/829J9rWjR3lVJ67S2 填寫基本資料,以利規劃議題方向;未留資料者恕不受理。★★