我們該如何規範人工智慧 (全文)?
#COMPUTEX,這個跟我一樣歲數的電腦資訊展會,我竟然直到今年才首次踏入。
這次受主辦單位之一的 #外貿協會 ( #TAITRA)邀請,在上週三(5/29)來到位於南港展覽館 2 館4樓的「 #SmarTEX」展區參觀,與多家參展公司交流。我雖然自己經營過科技媒體網站,但我不是擅長採訪會展的記者,也不是好的 3C 部落客,因此我抱著「幫自己正在思考的問題取材」的目標,前往這場大型科技會展。
(先說:因此這篇文章不會有太多展覽展位上產品的細節跟照片,請大家見諒。)
而我最近在想的問題,也就是本篇文章的主題是:進入人工智慧時代,我們該如何規範人工智慧?
或者,我們也可以反過來問:人工智慧該如何規範我們?
自認偏樂觀派的我,其實不希望讓大家覺得「人工智慧的未來真糟糕」,我的個人偏見是:大致來說,我喜歡科技,儘管科技的確會帶來衝擊,但只要我們更願意去思考,就更有機會讓未來往比較好的方向演進。所以談這個議題,目的是要避免要是這樣的狀況真的發生了,我們才懊悔地說「這真糟糕,為何我們沒有早點想到。」
--------------------
關於人工智慧的規範問題,首先,我們來看看 MIT 媒體實驗室做的一個調查「道德機器」(網址:http://moralmachine.mit.edu/hl/zh)。
在這個網頁裡頭,有許多類似「#電車難題」的情境,需要你來回答。每一個參與者,需要回答 13 個題目,每個題目只有兩個選項。在每一個題目的情況中,都有一輛突然煞車失靈的自動駕駛汽車,而你必須做出選擇,要繼續前進,或是轉彎離開。
例如在某個二選一的情況中,你認為這台自動駕駛車該繼續直衝,撞死一個成人男性,還是轉動方向盤,讓車子撞上另一側的護欄,殺死車上四個人,包括兩名兒童?
在另一個二選一的情況中,這台自動駕駛車上只有一隻貓,若繼續直衝,會撞上護欄,讓貓死於非命,但若自駕車往左彎,貓的性命可保,卻會撞死一位正在違規闖紅燈過馬路的遊民。
類似這樣的二元選擇有很多種變化,例如過馬路的可能是動物、可能是罪犯、可能是醫生,嬰兒,或是這些人的綜合隊伍,他們或許是違規過馬路,或許是遵守交通規則但運氣不好。而車子直衝或轉彎,也隱含了道德選擇。推薦各位都上道德機器的網頁去回答看看,看你會不會跟我一樣覺得實在是逼人太甚,到最後根本就放棄思考(XD)。
這個網頁告訴我們一件事:我們不可能對各種狀況產生共識、或得出任何堪稱正確的答案,事實上這個調查也不是要用多數人的意見來決定未來的自駕車要是真的煞車失靈的時候,該做出什麼行動。然而這個調查提醒我們,當越來越多的「人工智慧代理」進入我們的生活,就會產生更多類似的道德難題。
--------------------
舉例來說,若一個 #人工智慧股票交易系統,因為對政治領袖發在社群媒體上的文章產生錯誤的解讀,而決定拋售某一檔股票,造成連鎖反應,讓投資者大賠一筆,這樣的損失該由誰來負責呢?
延伸閱讀:〈AI 機器人害我投資賠錢,我能告他嗎?〉
https://www.techbang.com/posts/70447-ai-robot-made-me-invest-money-can-i-sue-him
舉例來說,若一個 #人工智慧戀愛配對系統,推薦了一位居心不良的對象給另一個使用者,最後使用者被騙財騙色了,誰會受到最多的指責呢?誰「#與惡的距離」最近呢?
再舉一例來說,如果用於門禁或 ATM 的臉部辨識 AI 系統出問題,太過嚴格以至於讓使用者開不了門、領不到錢,或是太過寬鬆使歹徒得以利用,那該怎麼定義問題的範圍,用理性的方式來解決呢?
臉部辨識作為服務升級的關鍵,從智慧零售到智慧家居到智慧服務,都少不了這項技術的身影,也是人工智慧使預測平價化的代表。只要你拿著這一兩年出的新手機,想必也不會陌生。例如我這次參訪的 #訊連科技(CyberLink)展場主打「FaceMe」AI 臉部辨識引擎,他們提供 SDK 與多家科技廠商合作,包括 #宏碁雲端、#奇景光電、#微程式、#凌群、#達碩 等。我也拜訪了同在 SmarTEX 展出的達碩智慧科技,了解他們使用這套臉部辨識引擎,針對銀髮照護、社區管理、企業差勤管理等不同情境設計的解決方案。即使在我與訊連跟達碩的主管談話時,他們自謙還不是目前領先的廠商,但他們的服務也已經非常成熟,可見這樣的軟硬體整合套裝將持續普及到各地,而台灣中堅企業將成為關鍵推手。
美中貿易戰,加上美國可能逐步針對有侵犯人權之虞的監控科技施加圍堵禁令(如 #海康威視、#浙江大華、#商湯科技 等),突顯出台灣提供類似服務的企業所能提供的安全價值,但即使如此,這項科技本身還是帶給社會其他挑戰。訊連科技的連啟民協理跟我說,臉部辨識的準確性不是 0與1 的取捨,他們的 SDK 能夠針對不同情境,讓配合的廠商自行調整精度,掌控風險,例如從一般社區門禁的萬分之一調到 ATM 的十萬分之一,同時使用邊緣運算技術(Edge Computing),讓資料不用都到雲端,降低反應時間及資安疑慮。
我在展場也與 #康訊科技 及 #訊舟科技 兩家公司進行交流。康訊從圖資起家,以地理定位技術切入車載系統設備,扎根台灣30多年來,已經成為全球領先的車隊管理服務商,不管是共享汽機車、物流公司、校園巴士、救護車、消防車都是他們服務的客戶。他們提供的設備就像車上的黑盒子,可以完全掌握車輛的狀況,如透過監測引擎啟動狀態,可以知道司機是否過勞;透過監測燃料消耗情況,可以知道是否有偷油的情形發生。而全球客戶累積的數據也成為重要的資產,可以協助物流業者優化路線。
訊舟作為老牌網通公司,這次展出許多產品,我認為最亮眼的就是他們與中研院陳伶志博士合作推出的「空氣盒子」,我雖然早就知道空氣盒子,卻是第一次看到並且從訊舟的角度聽這個已經是公民科技典範的故事,目前在全台已經有 4,000 多台設備上線,密集監測空氣品質,累積的數據也已經可以做到空品預測。
另外,這次在 SmarTEX,科技部推動的 #GLORIA 國際產學聯盟現場展出 67 項前瞻技術,我也與聯盟中的幾所大學交流,例如 #中國醫藥大學 推出能夠判讀骨齡、癌症等資訊的 AI,節省醫師判讀時間,加速診斷。#國立交通大學 伍紹勳博士則與 #新光醫療團隊 合作,用像是貼在東尼史塔克胸口的智慧貼片,只用3導程就能正確模擬專業醫療設施12導程的ECG心電圖信號,大幅改善病患的行動自由,也顯著降低成本。而具有超過 2,000 例達文西手術經歷的 #臺北醫學大學劉偉民醫師團隊,則在擁有大量醫師第一視角錄影的基礎上,推出手術教學平台,包括 VR 手術直播拍攝,與虛擬手術教學模擬系統。
從訊連、達碩、康訊、訊舟到這三個來自學界的醫療技術案例,可見都與數據分析、人工智慧辨識判讀、虛擬模型建置有關,儘管我相信在台灣醫療與科技、工程多重優勢下,他們都前景可期,但該問的仍然要問:要是出了差錯,怎麼辦?誰負責?各團隊對此問題顯然也都深思熟慮過。而我將他們給我的回答整理,加入我對「人工智慧如何規範」這個問題的答案。
--------------------
#以自駕車為例思考
著名的科幻小說家艾希莫夫,在1942 年的短篇小說 Runaround 以及後來的機器人系列裡頭,提出了機器人三原則(Three Laws of Robotics),很多人可能都會背了,這三原則分別是:第一,機器人不得傷害人類,或坐視人類受到傷害;第二,除非違背第一法則,否則機器人必須服從人類命令;以及第三,除非違背第一或第二法則,否則機器人必須保護自己。
參考:Three Laws of Robotics
https://en.wikipedia.org/wiki/Three_Laws_of_Robotics
這三原則聽起來很周密,但其實並非如此,而且也不太現實。以自動駕駛汽車作為案例吧,自動駕駛汽車是這一波人工智慧發展最受關注的領域,而且因為許多國家政府正在積極制訂法規,自駕車的自動化程度,跟依據自動化程度而制定的責任歸屬,也比較清楚,值得用來舉一反三,幫助我們思考,人工智慧要是進入到每一個領域,會帶來多少該仔細考量的變化。
那麼,到底什麼是自動駕駛汽車呢?你可能聽過什麼 Level 3,Level 5 的,那指的是自動駕駛的自動化程度分級,我們可以用這張表來簡單呈現:
這個分級定義,是由國際汽車工程協會(Society of Automotive Engineers, SAE)所提出的,已經獲得廣泛的共識。從第零級到第五級,共有六個層級。第零級的自動駕駛就是毫無自動化,一直到第二級,都還是以駕駛員為主,機器提供輔助。
但從第三級開始,負責開車的就是機器了。人類駕駛頂多在緊急狀態作為備用選項。第四級之後,就連緊急狀態也是由機器來應對,人類就從駕駛這件事基本退場了。到第五級的情況,就像是有一個超級人工智慧在負責開車,相信到時候,超級人工智慧也不會只用在車上。
目前已經有幾家汽車公司宣稱自己的自駕車達到了第三級,例如 #奧迪、#特斯拉、#現代汽車 等,大部分車廠也都表示在 2020 年就會推出第三級的自駕車。Google 旗下的 Waymo 以及台灣的財團法人車輛研究測試中心 ARTC 則表示都已經有第四級自駕車的技術能力。
日本政府非常積極地花工夫在自動駕駛的規範上,日本的「投資未來委員會」在 2018 年底,便提出了已經研擬多年的自動駕駛汽車指導原則。根據報導,日本首相安倍晉三希望透過採取具體步驟,建立法律框架,讓日本成為率先制定國家級規範的國家。首要處理的就是第三級自動化情況下的監督跟法律方向。我們就來看看,在自駕車的規則上,日本是怎麼想的?
日本的規則是,通常來說車主需要對車輛自主運行時發生的事故負責,並且由政府規定的汽車保險公司承保。如果車輛系統有明顯的缺陷,該負責的就是汽車製造商。強制性保險這一步確定了之後,保險公司也就能夠制定方案,讓車主選擇,要保哪一種。
另外,為了釐清事故的原因,自動駕駛汽車需要完整記錄位置、轉向、人工智慧系統操作狀態的信息,也就是說,得要有像是飛機黑盒子這樣的裝置。
那如果遇到新型態科技犯罪者或駭客呢?只要車主有採取適當的安全措施,例如更新車輛系統或維護保養,那麼若是因為駭客攻擊或入侵造成損害,就視同汽車被偷走了。
除了這幾個大方向以外,還有不少問題待解決。因為剛剛說的都只是民事責任,財產相關的規範,但還沒有碰觸到刑事責任,如果真的因為自駕車的缺陷而造成傷亡,除了車主以外,程式開發者,汽車製造商該負起哪些連帶的責任呢?若不能盡快釐清,程式開發者跟汽車製造商就難以決定是否該正式推出產品。
另外,自動駕駛的操作條件、例如速度限制,運作的時間長短,天氣狀況也都得考量,就像各種已經存在的汽車安全規範一樣,人工智慧控制系統的標準、對網路攻擊抵禦的強度,也都得一一制定。
--------------------
而以自動駕駛為案例,可以幫助我們思考該怎樣規範其他人工智慧的應用情境。歸納我這次到 SmarTEX 參訪交流的心得,我想比起艾希莫夫的機器人三原則,我們該建立的思考原則其實是這四個:
#面對此時此刻的人工智慧該有的思考原則
第一,#釐清主控權。整項任務中,是人類還是機器掌握主控權?能否以清楚的層級概念來劃分人類或機器的掌控程度?就像自駕車這樣呢?另外,在關鍵決策點,人類有沒有介入,是否被要求介入?這些都必須根據不同的應用環境來一個一個釐清。
第二,#損害管理與風險溝通。在發生意外的時候,擁有者、使用者、設計者、販售者、維修者等角色,是否已經明白可能要負的對應責任?這些責任的政府主管機關與相關的法律有哪些?其實每一樣新的科技進入我們的生活,都會有一段學習曲線,我們不太可能在了解所有問題、解開所有疑慮之後才採用新技術,而是必須妥善跟每一個角色溝通風險。
第三,#數據紀錄透明化。為了忠實檢討意外發生的原因,人工智慧系統需要持續紀錄運作狀況,以及感測器所收集到的各種資訊。並且要確保訓練人工智慧的資料也是可受檢驗的,避免造成系統化的偏見。另外也同等重要的是,收集數據的單位,像是企業、保險公司或政府,有義務證明,收集這些資訊,是必要且適當的。例如飛機上機長跟駕駛員的通話可以收集,但車內的通話該不該收集呢?商店內的顧客對話該不該收集呢?
第四,#系統思維。任何意外發生,都要了解,系統總是存在一定的風險,告知風險機率跟可能的狀況類型。以「不責難」的出發點,來面對後續的檢討,才能讓各角色更願意把系統中的臭蟲或不當行為揪出來,最終的目標是讓這個能夠便利更多人、拯救更多人的系統,越來越好。就像醫療一樣,如果每次只要有病人在手術中過世了,醫生都要被告到賠上身家,那還會有醫生願意繼續替病人動手術嗎?當醫療行為中有越來越多具有人工智慧的機器介入,診斷疾病、決定麻醉份量、甚至用機械手動手術,我們就不得不分配信任給更多的角色。
從 COMPUTEX 的 SmarTEX 展區上琳瑯滿目結合了人工智慧的技術,可以肯定人工智慧已經,也即將進入每一個我們可以想像得到的層面,過去的規範將無法適用,而且即使訂出新規範,也會很快過時。我們不可能完全理解我們部署的人工智慧系統的風險。當前的機器學習運行得如此之快,以至於沒有人真正知道機器是如何做出決策,通常連開發人員也不知道。這些系統還會持續從環境中學習並更新他們的函式,這使研究人員更難控制和理解決策過程,在這樣缺乏透明度,也就是常說的黑盒子問題籠罩下,要建立道德準則跟規範,當然就極為困難。
然而若不要大驚小怪,將人工智慧與人肉智慧對等來看,人類花了幾千年建立起的道德準則,同樣漏洞百出,我們卻也習慣了。人類專家有的偏見跟偏誤更是問題層出不窮,而我們也是一直倚賴這樣有缺陷的專家系統在運作。此刻的人工智慧浪潮,正給了我們機會跟動力,檢視我們習以為常的那些想法,我認為以上的四原則,更有助於我們迎向已經到來的未來世界,而開發出這些技術,推出產品與服務的企業,若都能夠率先思考這些問題,也是我們所期待的。就如同我在這次 COMPUTEX SmarTEX 展區上看見的一樣。
--------------------
最後,我雖然只逛了整個 COMPUTEX 的一部份,但很感謝外貿協會,讓我能不只是走馬看花,而是深入與廠商對話跟採訪,非常有收穫。幾乎每一家我逛的展位,都跟數據、AI(起碼是機器學習)有關,並將其結合硬體,整合出具有市場競爭力的方案,雖然我沒有資格替他們的產品背書,但我覺得深入談過之後,他們都對自己的產品與服務非常有自信,或許並非市場的領先者,也已經看見該切入的定位與成長的路徑。
今年的 COMPUTEX 展會已經結束,不過以後若有機會前往類似會展活動,很推薦大家跟我一樣帶著問題意識去逛逛,跟這些未來世界的打造者聊聊,畢竟我們得住在裡面。
--------------------
Medium 版:http://bit.ly/2HLuT8p
同時也有2部Youtube影片,追蹤數超過4萬的網紅李根興 Edwin商舖創業及投資分享,也在其Youtube影片中提到,【足本版】《李根興 - 十大創業忠告》18年功力,18分鐘內畀曬你! 第十: 「模糊地正確,好過準確地錯誤。Give it 5 years!」 第九: 「先選行業,後想經營方法。 」 第八: 「越多分析,越沒有出息。」 第七: 「不是 Work-Life Balance, 而是 Work-Li...
以自駕車為例思考 在 李根興 Edwin商舖創業及投資分享 Youtube 的最讚貼文
【足本版】《李根興 - 十大創業忠告》18年功力,18分鐘內畀曬你!
第十: 「模糊地正確,好過準確地錯誤。Give it 5 years!」
第九: 「先選行業,後想經營方法。 」
第八: 「越多分析,越沒有出息。」
第七: 「不是 Work-Life Balance, 而是 Work-Life Combined。」
第六: 「做生意要做農夫,不要做獵人。」
第五: 「賺錢,要賺有錢人的錢。唔好在乞衣兜入面搵飯食。 」
第四: 「投資要分散,做生意要專注。寧做雞頭,莫做牛尾。」
第三: 「做生意就好像用一隻圓形的湯匙,在四方盒中吃豆腐花。記緊留一些讓別人吃。」
第二: 「你愈要得到的東西,你越先要付出那東西。最好的已經在身邊。」
第一: 「笑多一點,嘻嘻哈哈又一天。最大的敵人始終是自己。」
全文內容:
從前有個人揸住㗎法拉利, 遇上個朋友。
朋友問:「 點解你揸架法拉利?」
「因為我重要,去邊度都要準時!」
朋友話:「 咁你唔使揸法拉利啦!」
點解?
「你咁重要,人哋會等你囉!」
啊,又有point ! 你有料到嘅,人哋自然會等你,自然會搵你㗎啦。 呢個故事對我好大啟發!
但做生意,創業點樣先至能夠做到有料到? 我依家就同你分享下我創業18年, 我自己經歷給你的「十大創業忠告! 」
第十: 「糊地正確,好過準確地錯誤。Give it 5 years!」
可能你覺得「創業好過打工」,「做金融好過做咕哩」, 「開茶餐廳好過做大排檔」,乜都好。只要你大方向,覺得係啱嘅,就 give it 5 years 俾佢5年時間,專注做好佢。
中間執行嘅過程,必定有好多轉接你今日唔會想像到, 你會行錯好多路,但只要你專注做個大方向,你就會摸出條血路。 如果摸足五年,你都摸唔到條路嘅話,你就執咗佢,唔好搞啦。因為你無料到。
我今年44歲,我唔敢講好成功, 但肯定喺香港兩次摸咗個新行業出來,做到No. 1。 第一次,由廿六歲開始,創業源於失業,我2001年11月開始買賣小生意,04年我認真地諗過執咗間公司佢,撐一撐住,去到2005年6月先至覺得自己真係有料到,間公司唔會執,06/07/08/09年就憑住生意買賣中介嘅新模式,橫掃曬市場上你可以數到嘅所有獎項,Harvard Business Review 都搵到兩個關於我哋公司嘅 case studies, 11年仲攞埋傑青。
記住,大方向啱就撐住,五年! 奇蹟可能會出現。
第九: 「先選行業,後想經營方法。 」
盡量選擇多人發達的行業,你發達機率會更大。 如果你的競爭對手個個都是乞丐,那麼你做乞丐的機會率都比較高。 做生意如賽馬, 你就是騎師,行業就是馬匹。 如果你騎的是跛馬,難道你自己去跑嗎。 隻馬是 fit 馬, 你繼續抽煙聽音樂都能夠跑贏。
如果你做運動是打算賺錢, 踢足球一定比捉波子棋容易。2項運動要做到世界冠軍都有難度, 但踢足球,排第十,什至排第100都能夠賺錢;但捉波子棋呢? 沒有人會喜歡看。
我敢說我曾經是香港史上完成最多生意買賣的中介公司,2001年起,12年間經我手成交超過一千一百單deals。 由於買賣小生意,我06年起租入很多舖開生意,售予創業者,09年起再買了好多舖開生意。由於香港平均每間街舖是三千萬,要做到舖界第一,我沒那麼多錢,必需向公開集資這條路行。
你問我香港做地產基金賺錢? 還是生意中介賺錢? 不用想,香港地小人多,肯定是地產+基金, 做到幾百億資產的有很多! 生意中介, 個個都是在捉波子棋。
因此我於2013年7月24日,就決心轉型,向證監會申請牌照,公司霎時間由超過300人減至6人, 經歷了我人生最黑暗的三年,但我跟自己說:「Edwin, 你教人要先選行業,後想經營方法。模糊地正確,好過準確地錯誤。 」
雖然向證監會申請一個橙,他就給我一個蘋果我。總算於16年成功取得牌照,終於成為全港第一間證監會持牌的商舖基金公司,從新上路。成功取得牌照至今,就買入了31間街舖,賣出了27間,我敢說是同期全港最多, 同期排第二的相差九丈遠,接著我很有信心我們將會是舖界No. 1。
以前與細公司競爭,現在不同了,舖王幾百億身家。 你的行頭又如何呢? 你的馬匹壯不壯呢 ?
第八: 「越多分析,越沒有出息。」
大方向正確便要行先,邊行邊改。還記得我2001年於 New York 被開除後,回來香港決定創立生意中介公司, 因為當時絕大部分人創業都是由零開始,若要頂入一個現成生意,只是靠睇報紙的「頂讓版」,與財務公司的廣告或夜總會聘請舞小姐的廣告放在一起。
還記得當初創業時,我跟我爸說起我的主意,爸爸還對我說:「根興,你想做頂讓生意,你知不知道你將來的客人,第一個問題會問你什麼? 」「 他們會問好的生意為何要賣,賣出的就是不好的! 」所以這行業不能做。 幸好他後來又說:「不能做,總比沒事做好。 邊做就邊看看哪一門生意較好,自己買下來,不要再做這一行了!」又讓他說中了, 而演變成今日的我。
從前有個路人走去火車站,走到分叉路就只看見路牌指向右邊。不知還要走多久,但火車半小時後便會開出。站在原地想了一會,看見前面有個農夫,便問一下農夫先生要走多久才到火車站。 農夫望了他一眼卻默不作聲,再問多一次,他都不回應。路人便不理他,也不知道他是聾還是啞。 怎料向前走了幾步, 農夫便大叫「二十分鐘!」奇怪,為何剛剛問他又不回應,走了卻出聲呢? 因此他決定再問問農夫,農夫回答什麼呢?
農夫回答,「先生,你剛剛問我的時候,你是站著的。你不走,我怎樣知道你走得多快。你走需要二十分鐘,我走便要五分鐘。 」 我由2001年走到現在, 馬雲於1999年創立阿里巴巴,兩年之差,他走得比我快四萬倍,同一時間已經有好多人跌倒, 有的卻重新再來過,有的已放棄了。 你走多快我不會知,我只知道大部分人都會站在路牌面前,繼續分析,繼續想要行幾久,一站就站一年、十年、一世。你又走了沒有呢?
第七: 「不是 Work-Life Balance, 而是 Work-Life Combined。」
不要為興趣而創業,但要把你的生意變成你的興趣。因為 Work Is Your Life.
容許我show off 一下,我有一輛法拉利,亦有一輛麥拿倫,但都不是我買的,是我哥不要了才給我。但我真的很enjoy weekend 或是晚上自己駕車四處睇舖。一,可以去全香港每一個我從來不會無端白事去的角落。二,駕駛名車又真的是過癮很多。
因此我星期一二三四五六日, 已不知不覺現場錄製了超過1300條商舖成交的影片放上網,肯定是香港另一個歷史紀錄,真是要 work life combined 才做得到。
你呢? 別人送給你的,或是自己買的,有什麼可以令你更 enjoy 工作呢。但如果你認為享受生活,便要放低工作的話, 可能你就要重新思考一下 what is your life。
第六: 「做生意要做農夫,不要做獵人。」
時間要當你的朋友,不要做敵人。獵人就是餐搵餐食餐餐清。以為打到獵物後便可以買飛機大砲,招聘千軍萬馬,可以食大茶飯。誰料到獵物突然間消失了,便要開除員工,變賣資產,打回原形。
農夫, 雖然開始的時候會比較辛苦, 要播種,要等,但一有收成後,就重複再重複,長遠不用再憂慮太多, 起碼不會餓死。
為求生存, 起步時難免要做獵人,不然未有收成前就餓死了。 但當你一路打獵時,你就一定要慢慢地把生意變成農田。當你成為農夫時,時間便會成為你的朋友,獵人太陽一落山,時間就成為你的敵人。 如何知道你是獵人還是農夫呢?
兩個條件:(1) 每一次客人來光顧的時候, 你要想想他會否明天就消失了。如果他只是可能光顧你一次,以後就不再回頭,你便是個獵人。如果他是重覆性購買,每星期每月每年都要給你錢,交租交月費交管理費,分佣/抽成的話,那你便是個農夫。
(2) 就是如果你什麼也不做,二十年後你的貨物會變成什麼。 如果全部都可能成為廢物廢紙的話, you'd better be 你要做好勤力工作的人, 因為你塊田越耕越乾。 但如果你大部分貨物都能夠保值,甚至乎升值的話,你即使懶一點也沒有所謂。 而只要比懶人勤力多一點,可能就不得了,因為你有一塊靚田。
我當年做生意買賣中介,就是因為大部分人客只是光顧一次,以及所有放盤的生意,如果我不能把它出售,二十年後對於我來說都只是一張廢的放盤紙。 所以那時候的我要做得好勤力,只可惜騎著一隻跛馬。
現在商舖基金則不同了, 每個月都有租金及管理費收,持貨放假100年,只要買得正確, 肯定會升值,所以現在做得輕鬆得多。
開店做生意也是一樣, 不要所有商舖都是租來的。如果可以,每租三/四間商舖,就買一間商舖。寧願開少些舖,每十間分店,便有兩/三間舖是屬於自己買的。總好過三十間商舖,全部都是租來的。 租舖,時間是敵人,一個浪打過來,全部都白費了。買舖,時間是朋友,即使租來的全都倒閉了,還有自己的舖撐著。 我從來未聽過有人買舖自用會後悔, 但我聽過好多租舖的人後悔30年前沒有買間舖 。
你又是獵人還是農夫呢? 你什麼也不做又會有什麼後果?
第五: 「賺錢,要賺有錢人的錢。唔好在乞衣兜入面搵飯食。 」
最好賺的錢,就是不用出自己錢。 出老闆錢、出公數,這種錢最好賺! 有錢人,跌了一百幾十萬也沒有感覺。
最難賺的錢,就是客人花費自己辛辛苦苦儲來的錢,他為了慳多些錢而來光顧你。他勒住勒住,每次都跟你計較。這種錢是最難賺的。
以前我是賺創業者辛辛苦苦儲來的錢,去買盤生意。買錯了,就分分鐘一鋪清袋。難聽的說句,那時候的我是在乞丐的鉢子內找飯吃,賺得好辛苦。
但今日便不同了。做商舖基金,買得舖的全部都是有錢人。投資我基金的都至少三百萬港幣起, 接下來我們什至會主力打開機構性投資者這條路, 賺的就是不用自己出錢的錢。賺有錢人的錢一定相對舒服好多。
你呢? 起步時可能係要靠賺辛苦錢, 因為入門比較容易。但記住有機會一定要upgrade自己, 例如: 賣給大公司/大家族,建立自己品牌收貴點,或是 partner大企業,借他們的力量去賺有錢人的錢。但問心,你現在是賺誰的錢呢?
第四: 「投資要分散,做生意要專注。寧做雞頭,莫做牛尾。」
你一定要找到個位,在市場上有需求,而別人卻不做,你自己又識做,那你就將絕大部分的資源放落去,全心全力去專注做好這個competitive sweet spot,做到全世界無人比你叻。而最重要的,是客人願意給錢,最好是很多錢去買你的sweet spot。 因為他們不願意給錢的話,你再厲害都沒有用。
....
歡迎隨時聯絡我 whatsapp +852 9036 1143
買舖/租舖/放舖/投資商舖基金熱線: 28301111 或 whatsapp +852 90361143
盛滙商舖基金 Bridgeway 網頁 www.bwfund.com
李根興創業之友 https://www.facebook.com/EdwinNetwork/
李根興商舖之友 https://www.facebook.com/edwinprimeshop/
李根興 youtube 商舖創業及投資分享商舖創業及投資分享https://www.youtube.com/channel/UCEN66AnLghXESgCDIsz-3Nw
#十大創業忠告,#18年功力於18分鐘,#18年創業經歷真心分享
以自駕車為例思考 在 志祺七七 X 圖文不符 Youtube 的最佳貼文
#記得打開CC字幕 #DIGI #除了幫忙面試人工智慧還可以做什麼?
✔︎ 訂閱志祺七七頻道: http://bit.ly/shasha77_subscribe
✔︎ 追蹤志祺 の IG :https://www.instagram.com/shasha77.daily
✔︎ 志祺七七 の 粉專 :http://bit.ly/shasha77_fb
各節重點:
01:07 【人工智慧到底是什麼?】
01:50 【AI 的發展跟應用】
04:15 【未來充滿 AI 的生活】
04:56 【AI 這麼重要,那臺灣準備好了嗎?】
06:35 【我們的觀點】
07:40 提問TIME
07:54 掰比~別忘了訂閱
【 製作團隊 】
|企劃:鯉鼬
|腳本:鯉鼬
|剪輯後製:Pookie
|剪輯助理:絲繡 & 夯吉
|演出:志祺
——
【 本集參考資料 】
→招聘面試:你喜歡機器人還是真人做你的面試官?:https://bbc.in/2Wg0t3a
→了解人工智慧的第一本書:機器人和人工智慧能否取代人類?:https://bit.ly/2vA8jc0
→從人到人工智慧,破解AI革命的68個核心概念:實戰專家全圖解 × 人腦不被電腦淘汰的關鍵思考:https://bit.ly/2VAhJ64
→機器是如何學習與進步?人工智慧的核心技術與未來:https://bit.ly/2Ce1KQa
→An executive’s guide to AI:https://mck.co/2vZepWE
→陽光失了玻璃窗 史上第一本人工智慧詩集:https://bit.ly/2IWsU2R
→國際人工智慧政策推動現況:https://bit.ly/2GZ4pA1
→懶人包_台灣 AI 行動計畫:https://2030.tw/2m3nBVr
→維基百科:人工智慧:https://bit.ly/2fUdaOV
→維基百科:人工智慧史:https://bit.ly/2vx2T1l
→臺灣智駕測試實驗室:https://bit.ly/2WqRgFn
→沙崙自駕車測試場正式揭幕 盼無人載具產業鏈接軌國際:https://2030.tw/2lXfjyk
→無人載具科技創新實驗條例:https://bit.ly/2Wk6vzL
→張忠謀:AI激化貧富差距與失業:https://bit.ly/2Y0uhkB
→數位國家創新經濟(DIGI+)季刊第二期:AI、5G、8K—2020年東京奧運實現數位想像:https://2030.tw/2kAPB2a
→我國數位科技引領產業創新之現況與展望:以臺灣 AI 行動計畫為例:https://2030.tw/2knX0Sr
→台灣 AI 行動計畫簡報:https://2030.tw/2knX84n
→臺灣 AI 行動計畫(2018-2021 年)合訂本:https://2030.tw/AI_Taiwan
→「AI on Chip示範計畫籌備小組」啟動 政院邀產官學研合作 推升台灣AI晶片產業發展 打造世界級人工智慧大腦:https://2030.tw/2lUi3MR
→台灣AI行動計畫—掌握契機,全面啟動產業AI化:https://2030.tw/2kinhBC
→賴揆:積極推動AI與產業需求接軌 加速「5+2」產業創新:https://2030.tw/2knXfNl
→微軟在台成立AI研發中心 賴揆:串連產業推動智慧國家:https://2030.tw/2kkX0Cx
→法國公布人工智能發展計畫:http://bit.ly/2VAkDaY
→【英國AI未來戰略大揭露】第一步先從資料共享打基礎,英國要成為全球AI實驗場域:http://bit.ly/2UTp8ZD
→SRB會議圓滿落幕 林揆期許台灣智慧科技邁向全球第一:https://2030.tw/2lU8MEm
→智慧科技SRB登場 首日聚焦產業利基與應用發展:https://2030.tw/2lXeC8c
→美國啟動AI大戰略的啟示:http://bit.ly/2GPkpTW
→數位國家·創新經濟發展方案(2017-2025 年):https://2030.tw/DIGI_Taiwan
→中國大陸人工智慧產業發展現況研析及對臺灣之影響初探:http://bit.ly/2Lfew7P
→行政院數位國家創新經濟推動小組:http://bit.ly/2DLOB1o
→川普發起「美國人工智慧倡議」,五大原則確保美國維持 AI 發展優勢:http://bit.ly/2ITNLUB
→DIGI⁺ Taiwan:http://bit.ly/2VFDVM4
→AI Taiwan:http://bit.ly/2URGt5n
→台灣AI行動計畫—掌握契機,全面啟動產業AI化:http://bit.ly/2VABTNn
→「台灣人工智慧實驗室」啟動 科技部:AI元年從此刻開始!:http://bit.ly/2GXLiGH
→日本Yahoo策略長揭露,AI未來20年三大方向:http://bit.ly/2Wli35M
→英國AI發展現況-與世界各國比較:http://bit.ly/2Ja1Mgh
→從AI 100看全球AI商業化趨勢及發展:http://bit.ly/2VHOYo6
→AI時代將臨 各國策略及企業佈局特點分析:http://bit.ly/2IVfRyQ
→AI 專家與 AI Sophia 互動,杜奕瑾:見過雅婷嗎?:http://bit.ly/2UQvfOs
→台灣人工智慧實驗室:http://bit.ly/2WhZBL7
→雅婷AI Pianist-首張同名概念專輯〈Yating〉:http://bit.ly/2VHPjHo
→誠品網路書店:http://bit.ly/2JbOu2I
→Chihuahua or muffin? My search for the best computer vision API:http://bit.ly/2UW8ubR
→TOPBOTS Vision API Benchmarking:http://bit.ly/2Y3Jul8
→從人工智慧、機器學習到深度學習,你不容錯過的人工智慧簡史:http://bit.ly/2IXlPPM
→翻轉人類未來的 AI 科技:機器學習與深度學習:http://bit.ly/2Vc6cKS
\每週7天,每天7點,每次7分鐘,和我們一起了解更多有趣的生活議題吧!/
🥁七七仔們如果想寄東西關懷七七團隊與志祺,傳送門如下:
106台北市大安區羅斯福路二段111號8樓