小一點大多是玩Scratch居多,大一點的就會學C、C++、Python
#程式 #家教 #Ptt #YWIN
同時也有10000部Youtube影片,追蹤數超過2,910的網紅コバにゃんチャンネル,也在其Youtube影片中提到,...
python 線上 家教 在 鏞鏞甫甫親子部落格 Facebook 的最佳解答
原來程式課程那麼重要!❤️【橘子蘋果兒童程式學苑】
學程式,同時學習邏輯和培養解決問題的能力!
#文末贈送價值千元體驗課程
.
說真的,我們這一代的家長,以前在學校只要讀好書就 OK,但是現在不一樣了,像是鏞鏞甫甫這一代的教育,強調多元學習能力,尤其是「程式設計」更是邏輯思考的重要指標,也難怪現在學校那麼重視程式課程!
.
鏞鏞是班上的資訊小老師,本身對電腦就很有興趣,因應 108 課綱,目前國小就開始導入程式學習,對於將來升學也是息息相關,程式設計學得好,才能與未來的世界接軌,而且是實質可以加分的強項呢!
.
上次和鏞鏞的叔叔聚餐,當工程師的叔叔就靠著自身優異的程式設計,獲得優渥的薪水,他也建議我們讓孩子及早接觸程式,他說程式課程不只能學到設計,更能幫助孩子擁有自信、培養解決問題的能力,盡早學習絕對是正確的選擇!
.
不過現在的孩子每個都比公司總裁還忙,想要持續學習程式設計,時間和接送方面似乎成了一個大問題,上網搜尋到已經有 10 年辦學經驗的「橘子蘋果程式設計學苑」,竟然還有程式設計的線上課程,對我們來說真的是太方便了,解決了時間和地點上安排的難處,更棒的是~教學超專業!
.
這次線上課程我們先試上 Python 課程,有程式語言直覺、簡單易懂的特性,非常適合國高中生入門,有利於強化邏輯概念、資料統整、問題解決的能力,而且學習完 Python 後便能挑戰微軟 MTA 國際認證,升學、留學加分可使用外,還可抵免國外大學學分喔!
.
鏞鏞好喜歡這個課程,他說老師講解很清楚,也很親切,課程安排也很有趣,而且他很享受在家舒舒服服的坐在軟軟沙發上,輕鬆無壓力的學習程式設計,就好像自己是一位厲害的程式設計師,自己在家研究電腦的感覺!
.
現在鏞鏞在橘子蘋果兒童程式學苑上線上課程,時間一到就坐在電腦面前準備迎接新的課程挑戰,有問題也可以直接和老師線上對話,完全就是一對一家教的概念,還可以免費補課,這樣的教學模式,孩子當然學得更精熟!
.
課程安排我也有特別研究,每堂課都有指定任務,讓孩子覺得很有挑戰性,任務完成後打個勾,就可以繼續下一個里程碑,這樣循序漸進的方式,孩子不知不覺就學會程式設計了,輕鬆無壓力,學習也更有熱忱囉!
.
除了線上課程之外,橘子蘋果還有夏令營,今年我們也想報名,讓程式設計的學習更多元! 程式教育是未來教育的重要基礎,讓孩子具備更多解決問題的能力、更有自信面對挑戰,可以進行線上課程的【橘子蘋果兒童程式學苑】我覺得超棒的,也分享給朋友喔!
.
❤️可以直接線上報名免費體驗: http://oaoa.fun/3du929
.
❤️對了! 除了線上課程,也同步有實體教室課程可以上喔,可以先到官網看看:https://orangeapple.co/
.
#學程式就到橘子蘋果 #免費兒童程式課程體驗
python 線上 家教 在 軟體開發學習資訊分享 Facebook 的最佳解答
✅ 課程說明
成為一個完整的資料科學家和機器學習工程師! 加入一個由20多萬名工程師組成的線上社群,參加一個由行業專家教授的課程,這些專家實際上為矽谷和多倫多等地的大公司工作過。 這是一個剛剛在 2020年 1 月推出的全新機器學習和資料科學課程! Andrei 課程的畢業生現在在谷歌、特斯拉、亞馬遜、蘋果、 IBM、 JP 摩根、 Facebook 等頂級科技公司工作。
從頭開始學習資料科學和機器學習,得到聘用,並在 Udemy 的最現代、最新的資料科學課程(我們使用最新版本的 Python、Tensorflow 2.0 和其他程式庫)的道路上享受樂趣。 本課程的重點在於提高效率: 不要再花時間在令人困惑的、過時的、不完整的機器學習教程上了。 我們非常自信,這是你找遍任何地方才能找到的最全面、最現代的課程(我們知道,這是一個大膽的陳述)。
這個綜合性的、基於專案的課程將向你介紹資料科學家的所有現代技能,在這個過程中,我們將建立許多真實世界的專案,新增到你的履歷組合中。 你可以訪問 Github 上的所有程式碼、工作簿和模板( Jupyter Notebooks ) ,這樣你就可以馬上把它們放到你的作品集中了! 我們相信這門課程解決了進入資料科學和機器學習領域的最大挑戰: 在一個地方擁有所有必要的資源,並學習僱主想要的最新趨勢和工作技能。
課程將是非常實際的,因為我們將帶領你從頭到尾成為一名專業的機器學習和資料科學工程師。 課程提供兩個路徑。 如果你已經知道程式設計,那麼你可以直接進入並跳過我們從頭教你 Python 的部分。 如果你是全新的,我們將從一開始就教你 Python 以及如何在現實世界中使用它來完成我們的專案。 不要擔心,一旦我們通過了像機器學習 101 和 Python 這樣的基礎知識,我們就可以進入高階主題,像神經網路、深度學習和轉移學習,這樣你將能夠在真實世界中實踐,並為實戰做好準備(我們向你展示完全成熟的資料科學和機器學習專案,並給你程式設計資源和備忘錄) !
本課程的主題包括 :
✅ 資料探索與視覺化
✅ 神經網路和深度學習
✅ 模型評估與分析
✅ Python 3
✅ Tensorflow 2.0
✅ Numpy
✅ Scikit-Learn
✅ 資料科學與機器學習專案和工作流程
✅ 在 Python 用 MatPlotLib 和 Seaborn 做資料視覺化
✅ 轉移學習( Transfer Learning )
✅ 影像辨識和分類
✅ 訓練/測試並交叉驗證
✅ 監督學習 : 分類、迴歸和時間序列
✅ 決策樹和隨機森林
✅ 整體學習( Ensemble Learning )
✅ 調整超參數( Hyperparameter Tuning )
✅ 採用 Pandas 資料框解決複雜任務
✅ 採用 Pandas 處理 CSV 檔
✅ 採用 TensorFlow 2.0 和 Keras深度學習 / 神經網路
✅ 使用 Kaggle 並進入機器學習競賽
✅ 如何呈現你的發現並讓你的老闆印象深刻
✅ 如何為你的分析清理並準備你的資料
✅ K 最近鄰( K Nearest Neighbours )
✅ 支援向量機( Vector Machines )
✅ 迴歸分析( Linear Regression/Polynomial Regression )
✅ 如何運用 Hadoop、Apache Spark、Kafka 和 Apache Flink
✅ 如何用 Conda、MiniConda 和Jupyter Notebooks 設定你的環境
✅ 配合 Google Colab 採用 GPUs
到本課程結束時,你將成為一名完整的資料科學家,可以在大公司找到工作。 我們將利用我們在課程中學到的一切來建構專業的真實世界專案,比如心臟病檢測、推土機價格預測器、犬種影像分類器等等。 到最後,你將有許多你已經建立的專案向其他人炫耀。
事實是: 大多數課程都教你資料科學,而且就只這樣。 他們會告訴你如何開始。 但問題是,你不知道接下來要往哪去,也不知道如何建立自己的專案。 或者他們會在螢幕上顯示大量的程式碼和複雜的數學運算,但是他們並沒能好好地解釋清楚到你能夠自己去解決現實生活機器學習問題的程度。
無論你是程式設計新手,還是想提高你的資料科學技能,或者來自不同的行業,這門課程都是為你而設的。 這個課程不是讓你在沒有理解原則的情況下編寫程式碼,這樣當你完成這個課程的時候,除了看另一個教學,你不知道還能做什麼。 不! 這門課程將推動你且向你挑戰,從一個完全沒有資料科學經驗的初學者,到成為一個可以滿載離開、忘記 Daniel 和 Andrei、建立自己的資料科學和機器學習工作流程的人。
機器學習在商業行銷和金融、醫療保健、網路安全、零售、運輸和物流、農業、物聯網、遊戲和娛樂、病人診斷、詐欺檢測、製造業的異常檢測、政府、學術 / 研究、推薦系統等等方面都有應用。 在這門課程中學到的技能將為你的職業生涯提供許許多多的選擇。
你聽到許多像人工神經網路或人工智慧等敘述,完成本課程,你將對這些詞有深刻的了解。
現在就加入課程,加入我們社群,在這個行業獲得支持,學習資料科學和機器學習。 我們保證這比任何關於這個話題的訓練營或者線上課程都要好。 課堂內見!
https://softnshare.com/complete-machine-learning-and-data-science-zero-to-mastery/