迎接終端AI新時代:讓運算更靠近資料所在
作者 : Andrew Brown,Strategy Analytics
2021-03-03
資料/數據(data)成長的速度越來越快。據估計,人類目前每秒產出1.7Mb的資料。智慧與個人裝置如智慧型手機、平板電腦與穿戴式裝置不但快速成長,現在我們也真正目睹物聯網(IoT)的成長,未來連網的裝置數量將遠遠超越地球的人口。
這包括種類繁多的不同裝置,像是智慧感測器與致動器,它們可以監控從震動、語音到視覺等所有的東西,以及幾乎大家可以想像到的所有東西。這些裝置無所不在,從工廠所在位置到監控攝影機、智慧手錶、智慧家庭以及自主性越來越高的車輛。隨著我們企圖測量生活週遭數位世界中更多的事物,它們的數量將持續爆炸性成長。
資料爆量成長,讓許多企業把資料從內部部署運作移到雲端。儘管集中到雲端運算的性質,在成本與資源效率、彈性與便利性有它的優點,但也有一些缺點。由於運算與儲存在遠端進行,來自終端、也就是那些在網路最邊緣裝置的資料,需要從起始點經過網際網路或其他網路,來到集中式的資料中心(例如雲端),然後在這裡處理與儲存,最後再傳回給用戶。
對於一些傳統的應用,這種方式雖然還可以接受,但越來越多的使用場景就是無法承受終端與雲端之間,資訊被接力傳遞產生的延遲。我們必須即時做出決策,網路延遲要越小越好。基於這些原因,開始有人轉向終端運算;越來越多人轉而使用智慧終端,而去中心化的程度也越來越高。此外,在這些即時應用中產生的龐大資料量,意味著處理與智慧必須在本地以分散的方式進行。
與資料成長連袂而來的,是人工智慧與機器學習(ML)也朝終端移動,並且越來越朝終端本身移動。大量來自真實世界的資訊,需要用ML的方式來進行詮釋與採取行動。透過AI與ML,是以最小的延遲分析影像、動作、影片或數量龐大的資料,唯一可行且合乎成本效益的方式。運用AI與ML的演算法與應用將在邊緣運作,在未來還將會直接在終端裝置上進行。
資料正在帶動從集中化到分散化的轉變
隨著資訊科技市場逐漸發展與成熟,網路的設計以及在其運作的所有裝置,也都跟著進化。全盛時期從服務數千個小型客戶端的主機,一直到客戶端伺服器模型中使用的越來越本地化的個人電腦運算效能,基礎架構持續重組與最佳化,以便更貼近網路上的裝置以及符合運作應用的需求。這些需求包含檔案存取與資料儲存,以及資料處理的需求。
智慧型手機與其他行動裝置的爆炸性成長,加上物聯網的快速成長,促使我們需要為如何讓資產進行最佳的部署與安排進行評估。而影響這個評估的因素,包括網路的可用性、安全性、裝置的運算力,以及把資料從終端傳送到儲存設備的相關費用,近來也已轉向使用分散式的運算模型。
從邊緣到終端:AI與ML改變終端典範
在成本、資源效率、彈性與便利性等方面,雲端有它的優點,裝置數量的急遽增加(如圖2),將導致資料產出量大幅增加。這些資料大部份都相當複雜且非結構化的,這也是為何企業只會分析1%~12% 的資料的原因之一。把大量非結構化的資料送到雲端的費用相當高、容易形成瓶頸,而且從能源、頻寬與運算力角度來看,相當沒有效率。
在終端執行進階處理與分析的能力,可協助為關鍵應用降低延遲、減少對雲端的依賴,並且更好地管理物聯網產出的巨量資料。
終端AI:感測、推論與行動
在終端部署更多智慧的主要原因之一,是為了創造更大的敏捷性。終端裝置處於網路的最邊緣與資料產生的地方,可以更快與更準確地做出回應,同時免除不必要的資料傳輸、延遲與資料移動中的安全風險,可以節省費用。
處理能力與神經網路的重大進展,正協助帶動終端裝置的新能力,另一股驅動力則是對即時資訊、效率(傳送較少的資訊到雲端)、自動化與在多數情況下,對近乎即時回應的需求。這是一個三道步驟的程序:傳送資料、資料推論(例如依據機器學習辨識影像、聲音或動作),以及採取行動(如物件是披薩,冰箱的壓縮機發出正常範圍外的聲音,因此發出警告)。
感測
處理器、微控制器與感測器產生的資料量相當龐大。例如,自駕車每小時要搜集25GB的資料。智慧家庭裝置、智慧牙刷、健身追蹤器或智慧手錶持續進化,並且與以往相比,會搜集更多的資料。
它們搜集到的資料極具價值,但每次都從各個終端節點把資料推回給雲端,數量又會過多。因此必須在終端進行處理。倘若部份的作業負載能在終端本身進行,就可以大幅提升效率。
推論
終端搜集到的資料是非結構性的。當機器學習從資料擷取到關聯性時,就是在進行推論。這表示使用AI與ML工具來幫忙訓練裝置辨識物件。拜神經網路的進展之賜,機器學習工具越來越能訓練物件以高度的精準度辨識影像、聲音與動作,這對體積越來越小的裝置,極為關鍵。
例如,圖4顯示使用像ONNX、PyTorch、Caffe2、Arm NN或 Tensorflow Lite 等神經網路工具,訓練高效能的意法半導體(ST)微控制器(MCU),以轉換成最佳化的程式碼,讓MCU進行物件辨識(這個的情況辨識對象是影像、聲音或動作)。更高效能的MCU越來越常利用這些ML工具來辨識動作、音訊或影像,而且準確度相當高,而我們接下來馬上就要對此進行檢視。這些動作越來越頻繁地從邊緣,轉移到在終端運作的MCU本身。
行動
資料一旦完成感測與推論後,結果就是行動。這有可能是回饋簡單的回應(裝置是開啟或關閉),或針對應用情況進行最佳化(戴耳機的人正在移動中,因此會針對穩定度而非音質進行最佳化),或是回饋迴路(根據裝置訓練取得的機器學習,輸送帶若發出聲音,顯示它可能歪掉了)。物聯網裝置將會變得更複雜且更具智慧,因為這些能力提升後,運算力也會因此增加。在我們使用新的機器學習工具後,一些之前在雲端或終端完成的關鍵功能,將可以移到終端本身的內部進行。
終端 AI:千里之行始於足下
從智慧型手機到車輛,今日所有電子裝置的核心都是許多的處理器、微控制器與感測器。它們執行各種任務,從最簡單到最複雜,並需要各式各樣的能力。例如,應用處理器是高階處理器,它們是為行動運算、智慧型手機與伺服器設計;即時處理器是為例如硬碟控制、汽車動力傳動系統,與無線通訊的基頻控制使用的非常高效能的處理器,至於微控制器處理器的矽晶圓面積則小了許多,能源效率也高出很多,同時擁有特定的功能。
這意味著利用ML工具訓練如MCU等較不複雜元件來執行的動作,之前必須透過威力更強大的元件才能完成,但現在邊緣與雲端則是理想的場所。這將讓較小型的裝置以更低的延遲執行更多種類的功能,例如智慧手錶、健康追蹤器或健康照護監控等穿戴式裝置。
隨著更多功能在較小型的終端進行,這將可以省下資源,包括資料傳輸費用與能源費用,同時也會產生極大的環境衝擊,特別是考量到全球目前已有超過200億台連網裝置,以及超過2,500億顆MCU(根據Strategy Analytics統計數據)。
TinyML、MCU與人工智慧
根據Google的TesnsorFlow 技術主管、同時也是深度學習與TinyML領域的指標人物 Pete Warden 表示:「令人相當興奮的是,我還不知道我們將如何使用這些全新的裝置,特別是它們後面代表的科技是如此的吸引人,我無法想像那些即將出現的全新應用。」
微型機器學習(TinyML)的崛起,已經催化嵌入式系統與機器學習結合,而兩者傳統上大多是獨立運作的。TinyML 捨棄在雲端上運作複雜的機器學習模型,過程包含在終端裝置內與微控制器上運作經過最佳化的模式識別模型,耗電量只有數毫瓦。
物聯網環境中有數十億個微型裝置,可以為各個產業提供更多的洞察與效率,包括消費、醫療、汽車與工業。TinyML 獲得 Arm、Google、Qualcomm、Arduino等業者的支持,可望改變我們處理物聯網資料的方式。
受惠於TinyML,微控制器搭配AI已經開始增添各種傳統上威力更強大的元件才能執行的功能。這些功能包括語音辨識(例如自然語言處理)、影像處理(例如物件辨識與識別),以及動作(例如震動、溫度波動等)。啟用這些功能後,準確度與安全性更高,但電池的續航力卻不會打折扣,同時也考量到各種更微妙的應用。
儘管之前提到的雲端神經網路框架工具,是取用這個公用程式最常用的方法,但把AI函式庫整合進MCU,然後把本地的AI訓練與分析能力插入程式碼中也是可行的。這讓開發人員依據從感測器、麥克風與其他終端嵌入式裝置取得的訊號導出資料模式,然後從中建立模型,例如預測性維護能力。
如Arm Cortex-M55處理器與Ethos U55微神經處理器(microNPU),利用CMSIS-DSP與CMSIS-NN等常見API來簡化程式碼的轉移性,讓MCU與共同處理器緊密耦合以加速AI功能。透過推論工具在低成本的MCU上實現AI功能並符合嵌入式設計需求極為重要,原因是具有AI功能的MCU有機會在各種物聯網應用中轉變裝置的設計。
AI在較小型、低耗電與記憶體受限的裝置中可以協助的關鍵功能,我們可以把其精華歸納至我們簡稱為「3V」的三大領域:語音(Voice,如自然語言處理)、視覺(Vision,如影像處理)以及震動(Vibration,如處理來自多種感測器的資料,包括從加速計到溫度感測器,或是來自馬達的電氣訊號)。
終端智慧對「3V」至關重要
多數的物聯網應用聚焦在一些特定的領域:基本控制(開/關)、測量(狀態、溫度、流量、噪音與震動、濕度等)、資產的狀況(所在地點以及狀況如何?),以及安全性功能、自動化、預測性維護以及遠端遙控(詳見圖 6)。
Strategy Analytics的研究顯示,許多已經完成部署或將要部署的物聯網B2B應用,仍然只需要相對簡單的指令,如基本的開/關,以及對設備與環境狀態的監控。在消費性物聯網領域中,智慧音箱的語音控制AI已經出現爆炸性成長,成為智慧家庭指令的中樞,包括智慧插座、智慧照明、智慧攝影機、智慧門鈴,以及智慧恆溫器等。消費性裝置如藍牙耳機現在已經具備情境感知功能,可以依據地點與環境,在音質優先與穩定度優先之間自動切換。
如同我們檢視的結果,終端AI可以在「3V」核心領域提供價值,而它觸及的許多物聯網領域,遍及B2B與B2C的應用:
震動:包含來自多種感測器資料的處理,從加速計感測器到溫度感測器,或來自馬達的電氣訊號。
視覺:影像與影片辨識;分析與識別靜止影像或影片內物件的能力。
語音:包括自然語言處理(NLP)、瞭解人類口中說出與寫出的語言的能力,以及使用人類語言與人類交談的能力-自然語言產生(NLG)。
垂直市場中有多種可以實作AI技術的使用場景:
震動
可以用來把智慧帶進MCU中的終端AI的進展,有各式各樣的不同應用領域,對於成本與物聯網裝置與應用的效用,都會帶來衝擊。這包括我們在圖6中點出的數個關鍵物聯網應用領域,包括:
溫度監控;
壓力監控;
溼度監控;
物理動作,包括滑倒與跌倒偵測;
物質檢測(漏水、瓦斯漏氣等) ;
磁通量(如鄰近感測器與流量監控) ;
感測器融合(見圖7);
電場變化。
一如我們將在使用場景單元中檢視的,這些能力有許多可以應用在各種被普遍部署的物聯網應用中。
語音
語音是進化的產物,也是人類溝通非常有效率的方式。因此我們常常想要用語音來對機器下指令,也不令人意外;聲音檢測是持續成長的類別。語音啟動在智慧家庭應用中很常見,例如智慧音箱,而它也逐漸成為啟動智慧家庭裝置與智慧家電的語音中樞,如電視、遊戲主機與其他新的電器。
在工業環境中,供車床、銑床與磨床等電腦數值控制(CNC)機器使用的電腦語音引擎正方興未艾。iTSpeex的ATHENA4是第一批專為這些產品設計的語音啟動作業系統。這些產品往往因為安全原因,有離線語音處理的需求,因此終端 AI 語音發展在這裡也創造出有趣的機會。用戶可以指示機器執行特定的運作,並從機器手冊與工廠文件,立即取用資訊。
語音整合在車輛中也相當關鍵。OEM 代工廠商持續對車載娛樂系統中的語音辨識系統,進行大量投資。語音有潛力成為最安全的輸入模式,因為它可以讓駕駛的眼睛持續盯著道路,而雙手仍持續握著方向盤。
對於使用觸控螢幕或硬體控制器通常需要多道步驟的複雜任務,語音辨識系統特別能勝任。這些任務包括輸入文字簡訊、輸入目的地、播放特定歌曲或歌曲子集,以及選擇廣播電台頻道。其他的服務包含如拋錨服務(或bCall)與禮賓服務。
視覺
正如我們之前已經檢視過,終端 AI 提供視覺領域全新的機會,特別是與物件檢測及辨識相關。這可能包括觀察生產線的製造瑕疵,以及找出自動販賣機需要補貨的庫存。其他實例包括農業應用,例如依據大小與品質為農產品分級。
曳引機裝上機器視覺攝影機後,我們幾乎可以即時檢測出雜草。雜草冒出後,AI可以分類雜草並估算它對農產收穫的潛在威脅。這讓農民可以鎖定特定的雜草,並打造客製的除草解決方案。機器視覺然後可以檢測除草劑的效用,並找出農地中仍具抗藥性的殘餘雜草。
使用場景
預測性維護工具已經從擷取與比較震動的量測資料,進化到提出即時的資產監控。藉由連接物聯網感測器裝置與維護軟體,我們也可能做到遠端監控。
震動分析
這種類型的預測性維護在旋轉型機器密集的製造工廠裡,相當常見。震動分析可以揭露鬆脫、不平衡、錯位與軸承磨損等狀況。例如,把震動計量器接上靠近選煤廠離心泵浦內部承軸處,就可以讓工程師建立起正常震動範圍的基線。超出這個範圍的震動,可能顯示滾珠軸承出現鬆動,需要更換。
磁感測器融合
磁感測器利用磁性浮筒與一系列可以感應並與液體表面一起移動的感測器,測量液面的高低。所有的這些應用都使用一個固定面上的磁感測器,它與附近平面的磁鐵一起作動,與這個磁鐵相對應的感測器也會移動。
聲學分析(聲音)
與震動分析相似,聲測方位分析也是供潤滑技師使用,主要是專注在主動採取潤滑措施。這意味我們可以避免移動設備時產生的過度磨損,否則會為了修理造成代價高昂的停機。實際的例子可能包括測量輸送皮帶的承軸狀況。出現過度磨損時,承軸會因為潤滑不足或錯位出現故障,可能造成整個生產流程的中斷。
聲學分析(超音波)
聲音聲學分析雖然可以用來進行主動與預測性維護,超音波聲學分析卻只能用於預測性維護。它可以在超音波範圍內找出與機器摩擦及壓力相關的聲音,並使用在會發出較細微聲音的電氣設備與機器設備。我們可以說這一類型的分析與震動或油量分析相比,更可以預測即將出現的故障。目前它部署起來比其他種類的預防性維護花費較高,但終端 AI 的進展可以促成這種細微層級的聲學檢測,大幅降低部署的費用。
熱顯影
熱顯影利用紅外線影像來監控互動機器零件的溫度,讓任何異常情況很快變得顯而易見。具備終端 AI 能力的裝置,可以長期檢測微細的變化。與其他對事故敏感的監視器一樣,它們會觸發排程系統,自動採取適當的行動來預防零件故障。
消費者與智慧家庭
將語音運用在消費者與智慧家庭,是最常看到的場景之一。這包括智慧型手機與平板電腦上、未包含電話整合功能的裝置,例如螢幕尺寸有限的穿戴式裝置。這類型的裝置包含智慧手錶與健康穿戴式裝置,可以為各種功能提供免動手的語音啟動。像 Amazon 的 Echo 或 Google 的 Home 等智慧音箱市場的成長,說明消費者對於可接收與提供語音互動等現有裝置的強勁需求,與日俱增。
消費者基於各種理由使用智慧音箱,最常見的使用場景為:
聽音樂;
控制如照明等智慧家庭裝置;
取得新聞與天氣預報的更新;
建立購物與待辦事項清單。
除了像智慧音箱與智慧電視等消費裝置,智慧家庭裝置語音的使用,也顯現相當的潛力。諸如連網門鈴(如 ring.com)等裝置與連網的煙霧偵測器(例如 Nest Protect 煙霧與一氧化碳警報)目前都已上市可供消費者選購,它們結合了語音與視覺的感測器融合功能以及運動檢測。有了連網的煙霧偵測器,裝置在偵測到煙霧或一氧化碳時,可以發出語音警告。
終端 AI 為強化這些能力提供了全新機會,而且常常結合震動(動作)、視覺與語音控制。例如,增加姿態辨識來控制例如電視等家電,或是把語音控制嵌入白色家電,即是以最低成本強化功能性最直接的方式。
健康照護
用來發現醫護資訊的 AI 驅動終端裝置的應用,將為病況的治療與診斷,提供更多的價值。這種資訊可能是資料,也可能是影像、影片以及說出的話,我們可以透過 AI 進行型態與診斷分析。這些資料將引發全新、更有效的治療方法,為整個產業節省成本。受惠於終端 AI 的進展,像 Google Duplex 等語音系統的複雜性將會降低。例如門診預約等勞力密集的工作,也可以轉換成 AI 活動。利用自然語言語音來延伸 AI 的使用,也可以把 AI 用在第一線的病人診斷,然後再由醫師接手提供諮詢。
其他健康照護實例包括像 Wewalk5 等物件,這是一個供半盲與全盲人員使用的智慧拐杖。它使用感測器來檢測胸口水平以上的物件,並搭配 Google Maps 與 Amazon Alexa 等 app,方便使用者提出問題。
結論
由於連網的終端裝置數量越來越多,這個世界也越來越複雜。連接到網際網路的裝置已經超過 300 億個,而微控制器的數量也超過 2,500 億,每年還會增加約 300 億個。越來越多的程序開始進行自動化,不過,把大量資料傳送到雲端涉及的延遲以及邊緣運算的額外費用,意味著許多全新、令人興奮且引人矚目的物聯網使用場景,可能無法開花結果。
解決這些挑戰的答案,並不是為雲端資料中心持續增添運算力。降低出現在邊緣的延遲雖然會有幫助,但不會解決日益分散的世界的所有挑戰。我們需要把智能應用到基礎架構中。
儘管為終端裝置增添先進的運算能力在十年前仍不可行,TinyML 技術近來的提升,已經讓位處相當邊緣的裝置 (也就是終端本身)增添智能的機會大大改觀。在終端增加運算與人工智慧能力,可以讓我們在源頭搜集到更多更具關聯性與相關的資訊。隨著裝置與資料的數量持續攀升,在源頭掌握情境化與具關聯性的資料,具有極大的價值,並將開啟全新的使用場景與營收機會。
終端裝置的機器學習,可以促成全新的終端 AI 世界。新的應用場景正在崛起,甚至跳過傳送大量資料的需求,因而紓解資料傳輸的瓶頸與延遲,並在各種作業環境中創造全新機會。終端 AI 將為我們開啟一個充滿全新機會與應用場景的世界,其中還有很多我們現在想像不到的機會。
附圖:圖1:從集中式到分散式運算的轉變。
(資料來源:《The End of Cloud Computing》,by Peter Levine,Andreessen Horowitz)
圖2:全球上網裝置安裝量。
(資料來源:Strategy Analytics)
圖3:深度學習流程。
圖4:MCU的視覺、震動與語音。
(資料來源:意法半導體)
圖5:AI 工具集執行模型轉換,以便在MCU上執行經最佳化的神經網路推論。
(資料來源:意法半導體)
圖6:物聯網企業對企業應用的使用-目前與未來。
(資料來源:Strategy Analytics)
圖7:促成情境感知的感測器融合。
(資料來源:恩智浦半導體)
資料來源:https://www.eettaiwan.com/20210303nt31-the-dawn-of-endpoint-ai-bringing-compute-closer-to-data/?fbclid=IwAR0JTRpNsJUl-DmSNpfIcymGQpkQaUgXixEaczwDpELxGCaCeJpkTyoqUtI
「arduino 感 測 器 程式碼」的推薦目錄:
- 關於arduino 感 測 器 程式碼 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
- 關於arduino 感 測 器 程式碼 在 Analog Devices台灣亞德諾半導體股份有限公司 Facebook 的最佳解答
- 關於arduino 感 測 器 程式碼 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
- 關於arduino 感 測 器 程式碼 在 Arduino程式設計_紅外線感測器控制程式設計與應用 ... - YouTube 的評價
- 關於arduino 感 測 器 程式碼 在 Arduino FC-37雨滴模組感測器| 傳產工業4.0化協作計畫 的評價
- 關於arduino 感 測 器 程式碼 在 Arduino 溫度+LED - gists · GitHub 的評價
- 關於arduino 感 測 器 程式碼 在 做了一個無線溫度感測器- Arduino.Taipei | Facebook 的評價
- 關於arduino 感 測 器 程式碼 在 Arduino 心跳感測器Part 2 的評價
arduino 感 測 器 程式碼 在 Analog Devices台灣亞德諾半導體股份有限公司 Facebook 的最佳解答
新品快訊: ADI發表通過UL 217測試及驗證的煙霧探測器參考設計和演算法
Analog Devices, Inc. (ADI)推出有助於快速實現精小尺寸、低功耗煙霧探測器原型設計的參考設計和演算法,使煙霧探測器能以更低的成本更快推向市場。新發表的CN0537可降低設計風險,並已經通過測試和驗證,符合UL 217煙霧報警器標準(第8版)。該參考設計採用ADI的ADPD188BI高性能光學感測器核心,並配合使用精密煙霧腔以減少誤報。
• 如需下載電路筆記,購買演算法、UL-217認證的數據集,以及原始程式碼和參考平台硬體,請瀏覽:www.analog.com/CN0537
• 觀看CN0537影片: https://www.analog.com/en/education/education-library/videos/6195684962001.html
• 瞭解有關ADI 煙霧探測解決方案的更多資訊
• 透過線上技術支援社群EngineerZone™聯繫工程師和ADI產品專家:ez.analog.com
CN0537參考設計的主要特點:
• 通過UL 217(第8版)測試和驗證的煙霧與火災探測演算法
• 用於演算法開發的數據封包,包含通過UL-217認證設備獲取的超過1,000個煙霧數據集
• 提供數據預處理、初始化、校準和環境補償原始程式碼的軟體
• 採用Arduino外形尺寸的煙霧探測器參考設計,用於快速原型設計和開發
• 低功耗硬體設計和計算複雜度較低的演算法,可延長電池壽命,縮減電池尺寸和成本
arduino 感 測 器 程式碼 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
在物聯網中添加【物】的六種方法
【作者: R. Beddor】 2020年07月09日 星期四
物聯網解決方案通常連接成百上千個邊緣設備,隨著更多邊緣設備的加入,成本和電源管理等常見的設計限制也越來越多。本文將概述物聯網應用中最常用的連接方法類型,並可從中權衡選擇及確定如何在物聯網設計時添加「物」。
如果您正在線上閱讀本文,則很可能是透過蜂巢網路、Wi-Fi或乙太網實現網路連接的,儘管這些連接方法在消費性電子產品中應用廣泛,但與物聯網(IoT)邊緣節點並無太多關聯。與消費性產品不同,大多數的邊緣設備不用檢查電子郵件(很幸運)或播放串流電影,因此這些設備無需具備這些產品所使用的高資料速率。
物聯網解決方案通常連接成百上千個邊緣設備,隨著更多邊緣設備的加入,成本和電源管理等常見的設計限制也越來越多。在這種規模下,產品與互聯網的連接方式將決定該解決方案的成功與否。
本文將概述物聯網應用中最常用的連接方法類型。請按照本文權衡選擇及確定如何在物聯網設計中來添加「物」。
[1] 乙太網
乙太網是一種將「物」連接到「網」的快速可靠的方法。乙太網常見於工業和建築自動化行業,尤其適用於在同一網路中包含許多節點的系統。
由於乙太網採用實體接線方式,因此本質上也是一種非常安全的連接方法。還可以使用乙太網電纜,透過乙太網供電(PoE)方式為設備供電,這樣便無需再使用單獨的電源模組來為終端設備供電。
但是,實體接線確實也帶來了巨大的設計挑戰,而且並非適用於所有應用。透過乙太網連接的節點必須靠近路由器,即使在家庭和建築自動化等短距離應用中,乙太網電纜的規模也同樣龐大,如何管理和隱藏纜線是一項重大挑戰。在現代建築中,自動照明系統在施工時使用實體接線方式,但是在未採用相關設計的建築中安裝乙太網物聯網系統通常是不可行的。
[2] Wi-Fi連接
作為網際網路連接的必備工具,Wi-Fi的無線特性極具吸引力。Wi-Fi受到主流設備的廣泛支援,並且不像乙太網一樣存在實體接線限制。
儘管具備普遍性,但是將Wi-Fi功能添加到嵌入式設計中通常很複雜。Wi-Fi之所以有吸引力是因為其無需接線且速度很快,但這種方法也存在安全性漏洞和功耗問題。因此,進行基於Wi-Fi的物聯網設計時,工程師需要在安全性、功耗和成本方面做審慎的權衡。
幸運的是,現在已經有解決方案能夠幫助工程師克服這些障礙。使用針對物聯網優化的Wi-Fi模組,有助於簡化設計並節省開發時間。諸如WINC1500等模組經過全面認證,支援安全協議,而且針對電池供電設備進行了優化,可在不影響成本和功耗的前提下實現Wi-Fi連接。
[3] LPWAN
低功耗廣域網路(LPWAN)在消費性產品中不太常見,因此可能不為人熟悉。物聯網應用的很大一部分是廣域應用,例如環境監控。
使用物聯網進行環境監控的優勢,在於我們可以監控鄉村、近海和通常無法進入的區域,而問題就在於這些地點位於鄉村、近海和通常無法進入的區域,例如無法給漂浮在馬里亞納海溝中的設備快速充電,也無法在撒哈拉沙漠裡連接到Wi-Fi。
典型的LPWAN使用範圍約為10公里左右。資料傳輸速度非常慢,但是,除非物聯網解決方案在檢查電子郵件或播放流媒體視頻,否則不太可能需要高速連接。
儘管常用於農業和偏遠地區,但LPWAN並不局限於此。LPWAN在城市中的利用率正不斷增長,例如用於跟蹤拍賣場中車輛的LPWAN應用,已成為北美最大的商用物聯網部署之一。
有兩種常用的LPWAN協議:LoRaWAN(源自長距離,也稱為LoRa)和Sigfox。兩者之間的一大差異是成本,Sigfox是一項基於訂閱式的服務,其工作方式與蜂巢式網路類似。如果Sigfox在所在的地區可用,則可以透過訂閱本地供應商的服務實現連接。而使用LoRaWAN時,開發人員可以透過創建「自助式」網路省去訂閱費用,但是大多數人仍會選擇使用本地網路供應商的LoRa閘道基礎架構,並且按照使用量付費。
[4] 蜂巢式網路
除了農村深處和偏遠地區,蜂巢式網路可以覆蓋其餘所有地方。對於需要此類覆蓋範圍的嵌入式系統,蜂巢式網路是唯一的選擇。但是蜂巢式網路十分昂貴,必須先選擇網路供應商,而且只有在透過政府監管部門批准後,才能建立自己的網路。對於每個節點來說,嵌入式元件和供應商訂閱的高昂成本,通常會抵消蜂巢式網路廣泛的覆蓋範圍所帶來的優勢。
也就是說,需要權衡使用蜂巢式網路連接「物」和每月為手機服務付費的利弊。物聯網專用的蜂巢式網路正如雨後春筍般興起,與LPWAN形成競爭之勢。LTE CAT-M是一種快速發展的物聯網蜂巢式網路。其中「M」代表「機器」,該網路針對物聯網進行了優化,是一種速度、成本和功耗更低的解決方案。不過,這樣可能會讓手機費用很高,CAT-M計畫的收費標準約為每月7美元,僅提供5 MB的資料。蜂巢式網路物聯網連接的其他選項,還包括CAT-0、CAT-1和新推出的NB-IoT(NB表示「窄頻帶」)。
5G的推出有望推動物聯網領域的創新。儘管5G的價格要比針對物聯網的網路更高,但其更快的速度可以進一步推動尖端物聯網應用(例如自動駕駛汽車)的發展,5G的覆蓋範圍遠遠不及LTE或3G,但仍在不斷擴展。一些行業分析師預測,在未來五年內,5G的使用量將占到全球人口的20%。
[5] 衛星
蜂巢式網路可以覆蓋大多數人口稠密的地區,但是,要如何在偏遠荒涼的地區實現網路連接呢?
衛星連接可用於物聯網應用,例如蜂巢式服務無法覆蓋的地球偏遠地區的運輸物流。雖然隨著衛星技術的發展,情況有望發生變化,但是開發衛星物聯網應用並不像開發其他連接選項那樣容易,許多衛星服務會留作國防用途。
[6] Bluetooth連接
對於藍牙(Bluetooth),您可能並不陌生。Bluetooth Classic和Bluetooth Low Energy (BLE) 的最大範圍均在100公尺以上,但通常用於相距不超過幾公尺的設備。日常生活中,藍牙在手機和電腦配件中隨處可見,廣泛應用於耳機、鍵盤和顯示技術。
得益於低功耗(BLE的功耗尤其低)、廣受支援並且可以快速配對的特性,藍牙非常適合消費性電子產品。與Wi-Fi不同,藍牙不會直接連接到互聯網,需要設置閘道才能接入互聯網,雖然自行設置閘道聽起來很麻煩,但通常操作起來就像使用手機連接Wi-Fi一樣容易。
最近更新的藍牙5.0版本擴展了藍牙的範圍,可以在家庭網路中使用,儘管Bluetooth Classic和Bluetooth LE通常用於連接僅相距數公尺的設備,但整個家庭都可以透過藍牙5.0實現互聯,應用範圍的擴展幫助藍牙成功進軍家庭自動化、照明和工業應用領域。
建議
這些連接方法的主要變化趨勢是簡化實施過程,Wi-Fi和藍牙等常用網路通常是評估和探索IoT設計的最簡單方法,這些網路無需自行搭建閘道或向供應商付費。
消費者可以使用多種Wi-Fi和藍牙原型模組,其中很多都提供開放原始程式碼和程式設計教程,我們建議使用連接模組,因為這樣會使設計更加靈活,當需要針對不同的網路調整設計時,可以更換模組,而不必從頭開始。
簡化設計流程
連接到網際網路只是物聯網設計流程的一部分,物聯網系統應具備以下三個元素:智慧、連接和安全,這些元素分別對應於三個電子元件:微控制器(MCU)、連接模組和安全元件,物聯網設計的挑戰在於如何整合上述三種元件。
Microchip的AVR-IoT WG開發板是精簡型Wi-Fi開發平台的一個範例,這款開發板經過預先的配置,可以安全連接到Google Cloud的物聯網平台,透過將安全元件、Wi-Fi控制器和MCU整合在同一塊開發板上,可以省去許多瑣碎的設計工作,直抵問題核心:以創新和快速的方式將物聯網產品推向市場。
Arduino Uno WiFi Rev 2同樣能夠提供智慧、連接和安全元素,Arduino擁有一個活躍的原型設計社群,線上提供了許多使用教程和開放的原始程式碼。
MikroElektronika click boards是快速原型設計模組,可直接連接到AVR-IoT WG開發板,或透過Arduino Uno WiFi R2的Shield板實現連接,這款模組提供多個連接click板(包括各種LoRa和藍牙模組),可在原型設計階段向物聯網設計中添加連接。
Arduino和AVR-IoT WG開發板等用戶友好型工具,顯著降低了構建物聯網設備的難度。無論是一位嵌入式設計人員、製造商,或只是一個對此領域感興趣的網路粉絲,都可以建立一個物聯網的網路。這種強大的無障礙性再加上日益緊密的網路世界,確保了連接將持續以前所未有的方式,推動網路世界的進步。
附圖:圖一 : 物聯網(IoT)由連接到同一網路的成百上千個設備組成
圖二 : 作為消費性電子產品優先考慮的互聯網連接選項,Wi-Fi具備高速和無需接線等優勢。
圖三 : LPWAN能夠完美應用於農業領域,因為這些網路能夠以極低的功耗覆蓋大面積區域。
圖四 : 雖然衛星適用於蜂巢式網路服務無法覆蓋的偏遠地區,但目前商用物聯網很少選用。
圖五 : AVR-IoT WG開發板經過預先配置,可以安全連接到Google Cloud。
圖六 : MikroElektronika BLE2 click板可輕鬆整合到許多通用開發平台中。
資料來源:http://www.ctimes.com.tw/DispArt-tw.asp?O=HK4797B951MARASTDC&fbclid=IwAR3_OtyFVmk5i0ZfxLYXWDZUkEiA-BiVsDSQmv9B4LcZnntfyUARsRBeXUI
arduino 感 測 器 程式碼 在 Arduino FC-37雨滴模組感測器| 傳產工業4.0化協作計畫 的推薦與評價
最後將A0接到Arduino板子的A0 ~ A5其中一個接點即可。 電路(接線)圖: 程式範例: void setup() { ... ... <看更多>
arduino 感 測 器 程式碼 在 Arduino 溫度+LED - gists · GitHub 的推薦與評價
Arduino 溫度+LED. #include "DHT.h" //預載感測器所需之程式庫. #define DHTPIN D6 //預先定義感測器信號名稱接腳位置在D6. #define redLED D1 //預先定義LED 接腳 ... ... <看更多>
arduino 感 測 器 程式碼 在 Arduino程式設計_紅外線感測器控制程式設計與應用 ... - YouTube 的推薦與評價
Arduino程式 設計_紅外線 感測器 控制 程式 設計與應用(紅外線 感測器 控制5顆LED實作、Infrared Sensor, Maker). STEAM Maker. ... <看更多>